S'abonner

A clinically interpretable convolutional neural network for the real-time prediction of early squamous cell cancer of the esophagus: comparing diagnostic performance with a panel of expert European and Asian endoscopists - 13/07/21

Doi : 10.1016/j.gie.2021.01.043 
Martin A. Everson, MBBS, MRCP (UK) 1, , Luis Garcia-Peraza-Herrera, MSc, PhD 2, Hsiu-Po Wang, MD 3, Ching-Tai Lee, MD 4, Chen-Shuan Chung, MD 5, Ping-Hsin Hsieh, MD 6, Chien-Chuan Chen, MD 3, Cheng-Hao Tseng, MD 4, Ming-Hung Hsu, MD 7, Tom Vercauteren, PhD 8, Sebastien Ourselin, PhD 9, Sergey Kashin, MD 10, Raf Bisschops, MD, PhD 11, Oliver Pech, MD, PhD 12, Laurence Lovat, MBBS, PhD 13, Wen-Lun Wang, MD, PhD 14, , Rehan J. Haidry, MD, FRCP 1,
1 University College London Hospitals, London, United Kingdom 
2 School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom 
3 National Taiwan University Hospital, Taipei, Taiwan 
4 E-Da Hospital/I-Shou University, Kaohsiung, Taiwan 
5 Far Eastern Memorial Hospital, New Taipei City, Taiwan 
6 Chimei Medical Center, Tainan, Taiwan 
7 Department of Internal Medicine, E-Da Hospital/ I-Shou University, Kaohsiung, Taiwan 
8 Department of Interventional Image Computing, Kings College London, London, United Kingdom 
9 School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom 
10 Department of Gastroenterology, Yaroslavl Oncology Hospital, Yaroslavl, Russian Federation 
11 Department of Gastroenterology, UZ Leuven, Leuven, Belgium 
12 Department of Gastroenterology, Krankenhaus Barmherzige Bruder, Regensburg, Germany 
13 Department of Gastroenterology, University College London Hospitals, London, United Kingdom 
14 Department of Internal Medicine, E-Da Hospital/ I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan 

Reprint requests: Martin A. Everson, 59 Woodlark Apartments, Hendon, London, NW97FA, United Kingdom.59 Woodlark ApartmentsHendonLondonNW97FAUnited Kingdom

Abstract

Background and Aims

Intrapapillary capillary loops (IPCLs) are microvascular structures that correlate with the invasion depth of early squamous cell neoplasia and allow accurate prediction of histology. Artificial intelligence may improve human recognition of IPCL patterns and prediction of histology to allow prompt access to endoscopic therapy for early squamous cell neoplasia where appropriate.

Methods

One hundred fifteen patients were recruited at 2 academic Taiwanese hospitals. Magnification endoscopy narrow-band imaging videos of squamous mucosa were labeled as dysplastic or normal according to their histology, and IPCL patterns were classified by consensus of 3 experienced clinicians. A convolutional neural network (CNN) was trained to classify IPCLs, using 67,742 high-quality magnification endoscopy narrow-band images by 5-fold cross validation. Performance measures were calculated to give an average F1 score, accuracy, sensitivity, and specificity. A panel of 5 Asian and 4 European experts predicted the histology of a random selection of 158 images using the Japanese Endoscopic Society IPCL classification; accuracy, sensitivity, specificity, positive and negative predictive values were calculated.

Results

Expert European Union (EU) and Asian endoscopists attained F1 scores (a measure of binary classification accuracy) of 97.0% and 98%, respectively. Sensitivity and accuracy of the EU and Asian clinicians were 97%, 98% and 96.9%, 97.1%, respectively. The CNN average F1 score was 94%, sensitivity 93.7%, and accuracy 91.7%. Our CNN operates at video rate and generates class activation maps that can be used to visually validate CNN predictions.

Conclusions

We report a clinically interpretable CNN developed to predict histology based on IPCL patterns, in real time, using the largest reported dataset of images for this purpose. Our CNN achieved diagnostic performance comparable with an expert panel of endoscopists.

Le texte complet de cet article est disponible en PDF.

Abbreviations : CAM, CNN, ESCN, ESD, IPCL, JES, ME, NBI


Plan


 If you would like to chat with an author of this article, you may contact Dr Everson at martin.everson@nhs.net.
 DISCLOSURE: Dr Vercauteren is co-founder and shareholder of Hypervision Surgical Ltd, London, UK. He is also a shareholder of Mauna Kea Technologies, Paris, France. Dr Bisschops is supported by a grant of Research Foundation Flanders (FWO). Dr Pech has received speaker honorarium from Fujifilm, Medtronic, Cook, Boston Scientific. Dr Lovat has undertaken consultancy and has a minor shareholding in Odin Vision. Dr Haidry has received educational grants to support research from Medtronic, Cook Endoscopy (fellowship support), Pentax Europe, Pentax UK, C2 Therapeutics, Beamline Diagnostics, and Fractyl. All other authors disclosed no financial relationships.


© 2021  American Society for Gastrointestinal Endoscopy. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 94 - N° 2

P. 273-281 - août 2021 Retour au numéro
Article précédent Article précédent
  • Barrett’s esophagus indefinite for dysplasia carries a definite risk of neoplasia
  • Amrit K. Kamboj, Cadman L. Leggett
| Article suivant Article suivant
  • Laparoscopic lymph node sampling: a new concept for patients with high-risk early esophagogastric junction cancer resected endoscopically
  • Anna Duprée, Hanno Ehlken, Thomas Rösch, Marina Lüken, Matthias Reeh, Yuki B. Werner, Jocelyn de Heer, Guido Schachschal, Till S. Clauditz, Oliver Mann, Jakob R. Izbicki, Stefan Groth

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.