S'abonner

Création d'un algorithme d'identification d'expériences vécues par des patients ou leurs proches à partir de messages issus des réseaux sociaux : un cas d'usage sur le COVID long - 05/11/22

Doi : 10.1016/j.respe.2022.09.045 
M. Talmatkadi , P. Foulquié, A. Déguilhem, S. Renner, L. Châteauneuf, A. Mebarki, N. Texier, S. Schuck
 Kap Code, Paris, France 

Auteur correspondant

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

Introduction

La pandémie de COVID-19 a entrainé une masse d'informations sur les réseaux sociaux et forums provenant de multiples acteurs : gouvernements, journalistes ou encore citoyens. Parmi ces messages, de nombreux patients se sont saisis de ces outils pour partager leurs symptômes et se regrouper en communauté, comme c'est le cas des patients atteints de COVID long avec le hashtag #aprèsJ20. Un algorithme de traitement automatique du langage naturel capable d'identifier les messages constituant des expériences de santé vécues par des patients ou des proches permettrait d'exploiter ces données de vie réelle dans un objectif de santé publique.

Méthodes

A partir de différentes sources, 12 430 messages issus de forums et réseaux sociaux (Twitter, Facebook) ont été extraits sur différentes pathologies : cancer (sans précision d'une localisation), diabète, maladie de Fabry, COVID-19, sevrage tabagique. Ces messages ont été manuellement analysées et codifiées en trois catégories selon la nature de l'internaute : patient/aidant ou proche/répondant. Sur la base de ce « gold standard », un modèle de « machine learning » a été créé et entrainé, couplé avec des champs lexicaux marqueurs d'expériences vécues (par exemple, la présence d'un récit à la première personne ou du champ lexical de la famille). Deux modèles Xgboost ont été choisis permettant de déterminer en premier lieu si l'internaute est un proche de malade ou non, puis dans un second temps, si c'est un patient ou non. Pour être validé, ce modèle a été appliqué sur des messages spécifiques au COVID long. Une sélection aléatoire de ces messages couplée à une annotation par trois annotateurs a permis de mesurer les performances du modèle.

Résultats

Après application de l'algorithme d'identification d'expériences vécues par des patients ou des proches, 700 messages ont été revus et annotés sur le COVID long. Les catégories patients et aidants ont été regroupées en raison des nombreux cas de formes familiales de COVID long rapportés sur les réseaux sociaux. Les performances du modèle ont permis de mesurer une sensibilité de 96 %, une spécificité de 76 %, une « accuracy » à 87 % et une précision de 84 %.

Conclusion

Un algorithme identifiant les expériences vécues par des patients ou des proches au sein des messages issus des réseaux sociaux facilite leur utilisation comme données de vie réelle. Les bonnes performances de l'algorithme, notamment sur les formes longues de COVID-19, permettent un suivi prospectif de ces patients dans un objectif de santé publique. Une future version du modèle devra intégrer la possibilité d'identifier au sein d'un même message la présence d'expériences à la fois de patients et de proches, notamment en cas de formes familiales (”mon fils et moi avons un covid long ”).

Déclaration de liens d'intérêts

Les auteurs n'ont pas précisé leurs éventuels liens d'intérêts.

Le texte complet de cet article est disponible en PDF.

© 2022  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 70 - N° S4

P. S265 - novembre 2022 Retour au numéro
Article précédent Article précédent
  • La prescription de méthylphénidate chez l'enfant et l'adolescent en France : caractéristiques et évolution entre 2010 et 2019
  • B. Thomé, S. Ponnou, H. Haliday, F. Gonon
| Article suivant Article suivant
  • Étude de vraie vie d'utilisation du durvalumab en consolidation après radio-chimiothérapie dans les cancers bronchiques non à petites cellules (CBNPC) de stade III non résécables : cohorte française de PACIFIC-R
  • C. Chouaid, E. Pichon, M. Wislez, P. Giraud, W. Hilgers, C. Daniel, M. Pérol, A.K. Chouahnia, S. Ano, M. GiajLevra, C. Correia Da Silva, L. Falchero

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.