Predicting stroke with machine learning techniques in a sub-Saharan African population - 21/06/25

Doi : 10.1016/j.neuri.2025.100216 
Benjamin Segun Aribisala a, b, c, Deirdre Edward a, Godwin Ogbole d, Onoja M. Akpa e, Segun Ayilara d, Fred Sarfo f, Olusola Olabanjo b, Adekunle Fakunle g, h, Babafemi Oluropo Macaulay b, Joseph Yaria h, Joshua Akinyemi e, Albert Akpalu i, Kolawole Wahab j, Reginald Obiako k, Morenikeji Komolafe l, Lukman Owolabi m, Godwin Osaigbovo n, Akinkunmi Paul Okekunle o, Arti Singh p, Philip Ibinaye k, Osahon Osawata e, Adeniyi Sunday j, Ijezie Chukwuonye q, Carolyn Jenkins r, Hemant K. Tiwari s, Okechukwu Ogah e, Ruth Y. Laryea f, Daniel T. Lackland r, Oyedunni Arulogun t, Omotolani Ajala h, Rufus Akinyemi u, v, Bruce Ovbiagele w, 1, Steffen Sammet a, , 1 , Mayowa Owolabi h, v, ⁎⁎, 1
on behalf of the SIREN and SIBS Genomics investigators
a Department of Radiology, University of Chicago, Chicago, IL, USA 
b Department of Computer Science, Lagos State University, Lagos, Nigeria 
c Department of Computer Science, Oduduwa University, Nigeria 
d Department of Radiology, University of Ibadan, Ibadan, Nigeria 
e Department of Epidemiology and Medical Statistics, University of Ibadan, Nigeria 
f Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 
g Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Nigeria 
h Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria 
i Department of Medicine, University of Ghana Medical School, Accra, Ghana 
j Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria 
k Department of Medicine, Ahmadu Bello University, Zaria, Nigeria 
l Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria 
m Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria 
n Department of Medicine, University of Jos, Jos, Nigeria 
o Department of Food and Nutrition, Seoul National University, Korea 
p Department of Epidemiology and Biostatistics, Kwame Nkrumah University of Science and Technology, Ghana 
q Department of Medicine, Federal Medical Centre, Umuahia, Nigeria 
r Medical University of South Carolina, Charleston, USA 
s University of Alabama at Birmingham, Birmingham, AL, USA 
t Department of Health Promotion, University of Ibadan, Ibadan, Nigeria 
u Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria 
v Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Nigeria 
w Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, USA 

Corresponding author at: Department of Radiology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC2026 Chicago, IL 60637, USA.Department of RadiologyUniversity of Chicago Medicine5841 S. Maryland AvenueMC2026ChicagoIL60637USA⁎⁎Corresponding author at: Center for Genomics and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, University College Hospital, Ibadan, and Blossom Specialist Medical Center, Ibadan, Nigeria.Center for Genomics and Precision MedicineCollege of MedicineUniversity of IbadanUniversity College HospitalBlossom Specialist Medical CenterIbadanIbadanIbadanNigeria

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Stroke is the second leading cause of death and the third leading cause of disability globally, including Africa, which bears its largest burden. Accurate models are needed in Africa to predict and prevent stroke occurrence. The aim of this study was to identify the best machine learning (ML) algorithm for stroke prediction.

Methods

We assessed medical data of 4,236 subjects comprising 2,118 stroke patients and 2,118 controls from the SIREN database. Sixteen established vascular risk factors were evaluated in this study. These are addition of salt to food at table during eating, cardiac disease, diabetes mellitus, dyslipidemia, education, family history of cardiovascular disease, hypertension, income, low green leafy vegetable consumption, obesity, physical inactivity, regular meat consumption, regular sugar consumption, smoking, stress and use of tobacco. From these, we also selected the 11 topmost risk factors using Population-Attributable Risk ranking. Eleven ML models were built and empirically investigated using the 16 and the 11 risk factors.

Results

Our results showed that the 16 features-based classification (maximum AUC of 82.32%) had a slightly better performance than the 11 feature-based (maximum AUC 81.17%) algorithm. The result also showed that Artificial Neural Network (ANN) had the best performance amongst eleven algorithms investigated with AUC of 82.32%, sensitivity of 71.23%, specificity of 80.00%.

Conclusion

Machine Learning algorithms predicted stroke occurrence employing major risk factors in Sub-Saharan Africa better than regression models. Machine Learning, especially Artificial Neural Network, is recommended to enhance Afrocentric stroke prediction models for stroke risk factor quantification and control in Africa.

Le texte complet de cet article est disponible en PDF.

Highlights

Stroke incidence is reducing in the Western world but increasing in Africa.
Accurate computational models are needed in Africa to predict and prevent stroke occurrence.
We proposed 11 machine learning models for predicting stroke in Africa.
Our results show that machine learning has a high predictive value.
Our results also identified 16 major risk factors for stroke in Africa.

Le texte complet de cet article est disponible en PDF.

Keywords : Stroke, SIREN, Sub-Sahara Africa, Risk factors, Machine learning, Artificial neural network


Plan


© 2025  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 5 - N° 3

Article 100216- septembre 2025 Retour au numéro
Article précédent Article précédent
  • Exploring community pharmacist's psychological intentions to adopt generative artificial intelligence (GenAI) chatbots for patient information, education, and counseling
  • Hafidz Ihsan Hidayatullah, Muhammad Taufiq Saifullah, Muhammad Thesa Ghozali, Ayesha Aziz
| Article suivant Article suivant
  • Beyond the numbers: App-enabled stroke prediction system for high-risk individuals in imbalanced datasets
  • Abrar Faiaz Eram, Aliva Sadnim Mahmud, Marwan Mostafa Khadem, Md Amimul Ihsan

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.