Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 1
pages 53-58 (2002)
Doi : S1631-073X(02)02420-2
Received : 28 January 2002 ;  accepted : 29 April 2002
Rational homotopy groups and Koszul algebras
Groupes d'homotopie rationnels et algèbres de Koszul

Stefan Papadima a , Alexander I. Suciu b
a Institute of Mathematics of the Romanian Academy, PO Box 1-764, RO-70700 Bucharest, Romania 
b Department of Mathematics, Northeastern University, Boston, MA 02115, USA 

Note presented by Jean-Pierre Serre


Let X and Y be finite-type CW-spaces (X connected, Y simply connected), such that the ring H(Y,Q) is a k -rescaling of H(X,Q). If H(X,Q) is a Koszul algebra, then the graded Lie algebra π(ΩY)Q is the k -rescaling of gr(π1X)Q. If Y is a formal space, then the converse holds, and Y is coformal. Furthermore, if X is formal, with Koszul cohomology algebra, there exist filtered group isomorphisms between the Malcev completion of π 1 X , the completion of [ΩS2k+1,ΩY], and the Milnor-Moore group of coalgebra maps from H(ΩS2k+1,Q) to H(ΩY,Q). To cite this article: S. Papadima, A.I. Suciu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 53-58.

The full text of this article is available in PDF format.

Soient X et Y deux CW-espaces de type fini (X connexe, Y simplement connexe), tels que l'anneau de cohomologie H(Y,Q) soit un k -recalibrage de H(X,Q). Si H(X,Q) est une algèbre de Koszul, alors l'algèbre de Lie graduée π(ΩY)Q est le k -recalibrage de gr(π1X)Q. Si Y est un espace formel, alors l'implication réciproque est vraie aussi, et l'espace Y est coformel. De plus, si X est formel, avec algèbre de cohomologie de Koszul, on trouve des isomorphismes de groupes filtrés entre le complété de Malcev de π 1 X , le complété de [ΩS2k+1,ΩY], et le groupe de Milnor-Moore d'applications de cogèbres entre H(ΩS2k+1,Q) et H(ΩY,Q). Pour citer cet article : S. Papadima, A.I. Suciu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 53-58.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline