Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 347, n° 23-24
pages 1355-1360 (décembre 2009)
Doi : 10.1016/j.crma.2009.10.025
Received : 7 August 2008 ;  accepted : 27 October 2009
A mapping connected with the Schur–Szegő composition
Une application liée à la composition de Schur–Szegő

Vladimir Petrov Kostov
Université de Nice, Laboratoire de Mathématiques, UMR 6621, parc Valrose, 06108 Nice cedex 2, France 


Every monic polynomial in one variable of the form  ,  , is presentable in a unique way as a Schur–Szegő composition of   polynomials of the form  . We prove geometric properties of the affine mapping associating to the coefficients of S the  -tuple of values of the elementary symmetric functions of the numbers  . To cite this article: V.P. Kostov, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

Tout polynôme unitaire à une variable de la forme  ,  , est présentable de façon unique comme composition de Schur–Szegő de   polynômes  . Nous prouvons des propriétés géométriques de l’application affine associant aux coefficients de S le  -uplet des valeurs des fonctions symétriques élémentaires des nombres  . Pour citer cet article : V.P. Kostov, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

© 2009  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline