Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 342, n° 11
pages 873-876 (juin 2006)
Doi : 10.1016/j.crma.2006.03.012
Received : 15 April 2005 ;  accepted : 6 Mars 2006
Comportement asymptotique dʼestimateurs de la densité par projection tronqués
Asymptotic behavior of truncated projection density estimators

Jean-Baptiste Aubin
Université Paris 6, LSTA, boîte 158, 175, rue du Chevaleret, 75013 Paris, France 


Nous étudions deux versions tronquées de lʼestimateur de la densité (par rapport à une mesure -finie μ ) par projection. Ces versions se basent sur des indices de troncature dépendants des données et elles seront étudiées dans divers contextes. Nous décrivons dʼabord le comportement asymptotique des indices de troncature. Nous montrons alors que les estimateurs correspondants atteignent une vitesse suroptimale au sens de lʼerreur quadratique intégrée sur un sous-ensemble   dense de  . De plus, nous déterminons les cas dans lesquels les estimateurs atteignent une vitesse quasi-optimale pour cette même erreur sur le complémentaire de  . Pour citer cet article : J.-B. Aubin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

The full text of this article is available in PDF format.

We present different versions of the truncated projection estimator of a density with respect to a -finite measure μ , where the traditional truncation index   is replaced by   (or  ) under various conditions. First, we describe the asymptotic behaviour of   (or  ). Next, we show that these estimators reach a superoptimal rate for the mean square error on a dense subset   of  . We finally state under which conditions these estimators reach quasioptimal rate of convergence when the unknown density f belongs to  . To cite this article: J.-B. Aubin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

The full text of this article is available in PDF format.

© 2006  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline