Suscribirse

External validation of an artificial intelligence solution for the detection of elbow fractures and joint effusions in children - 07/03/24

Doi : 10.1016/j.diii.2023.09.008 
Michel Dupuis a, Léo Delbos b, Alexandra Rouquette b, Catherine Adamsbaum a, c, 1, , Raphaël Veil b, 1
a AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin Bicêtre, France 
b AP-HP, Bicêtre Hospital, Epidemiology and Public Health Department, 94270 Le Kremlin Bicêtre, France 
c Paris Saclay University, Faculté de Médicine, 94270 Le Kremlin Bicêtre, France 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

An external validation of an artificial intelligence solution was performed in a real-life context to estimate its performances in the diagnosis of elbow fracture and/or joint effusion.
The senior radiologist's conclusion, blinded to the artificial intelligence solution conclusion, was used as the standard of reference.
The artificial intelligence solution demonstrates a negative predictive value of 92% in the diagnosis of elbow fracture and/or joint effusion in children.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to conduct an external validation of an artificial intelligence (AI) solution for the detection of elbow fractures and joint effusions using radiographs from a real-life cohort of children.

Materials and methods

This single-center retrospective study was conducted on 758 radiographic sets (1637 images) obtained from consecutive emergency room visits of 712 children (mean age, 7.27 ± 3.97 [standard deviation] years; age range, 7 months and 10 days to 15 years and 10 months), referred for a trauma of the elbow. For each set, fracture and/or effusion detection by eleven senior radiologists (reference standard) and AI solution was recorded. Diagnostic performance of the AI solution was measured via four different approaches: fracture detection (presence/absence of fracture as binary variable), fracture enumeration, fracture localization and lesion detection (fracture and/or a joint effusion used as constructed binary variable).

Results

The sensitivity of the AI solution for each of the four approaches was >89%. Greatest sensitivity of the AI solution was obtained for lesion detection (95.0%; 95% confidence interval: 92.1–96.9). The specificity of the AI solution ranged between 63% (for lesion detection) and 77% (for fracture detection). For all four approaches, the negative predictive values were >92% and the positive predictive values ranged between 54% (for fracture enumeration and localization) and 73% (for lesion detection). Specificity was lower for plastered children for all approaches (P < 0.001).

Conclusion

The AI solution demonstrates high performances for detecting elbow's fracture and/or joint effusion in children. However, in our context of use, 8% of the radiographic sets ruled-out by the algorithm concerned children with a genuine traumatic elbow lesion.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence, Elbow, Emergency, Pediatric fracture, Radiography

List of abbreviations : CI, FN, FP, PLR, NLR, NPV, PACS, PPV, ROI, TN, TP


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 105 - N° 3

P. 104-109 - mars 2024 Regresar al número
Artículo precedente Artículo precedente
  • Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution
  • Aissam Djahnine, Carole Lazarus, Mathieu Lederlin, Sébastien Mulé, Rafael Wiemker, Salim Si-Mohamed, Emilien Jupin-Delevaux, Olivier Nempont, Youssef Skandarani, Mathieu De Craene, Segbedji Goubalan, Caroline Raynaud, Younes Belkouchi, Amira Ben Afia, Clement Fabre, Gilbert Ferretti, Constance De Margerie, Pierre Berge, Renan Liberge, Nicolas Elbaz, Maxime Blain, Pierre-Yves Brillet, Guillaume Chassagnon, Farah Cadour, Caroline Caramella, Mostafa El Hajjam, Samia Boussouar, Joya Hadchiti, Xavier Fablet, Antoine Khalil, Hugues Talbot, Alain Luciani, Nathalie Lassau, Loic Boussel
| Artículo siguiente Artículo siguiente
  • Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study
  • Joël Greffier, Maxime Pastor, Salim Si-Mohamed, Cynthia Goutain-Majorel, Aude Peudon-Balas, Mourad Zoubir Bensalah, Julien Frandon, Jean-Paul Beregi, Djamel Dabli

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.