Suscribirse

Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study - 07/03/24

Doi : 10.1016/j.diii.2023.10.004 
Joël Greffier a, , Maxime Pastor a, Salim Si-Mohamed b, c, Cynthia Goutain-Majorel d, Aude Peudon-Balas d, Mourad Zoubir Bensalah d, Julien Frandon a, Jean-Paul Beregi a, Djamel Dabli a
a IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France 
b University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F‐69621, 69100 Villeurbanne, France 
c Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, 69500 Bron, France 
d Department of Medical Imaging, Centre Hospitalier de Perpignan, 66000 Perpignan, France 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

A super-resolution deep-learning image reconstruction algorithm (PIQE) dedicated to cardiac image reconstruction has been developed.
Compared to the standard deep-learning image reconstruction algorithm (AiCE), PIQE reduces noise, improves spatial resolution, noise texture and detectability of simulated cardiac lesions.
PIQE seems to have a greater potential for dose reduction in cardiac CT acquisition.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a cardiac computed tomography (CT) protocol.

Materials and methods

Acquisitions were performed using the CT ACR 464 phantom at three dose levels (volume CT dose indexes: 7.1/5.2/3.1 mGy) using a prospective cardiac CT protocol. Raw data were reconstructed using the three levels of AiCE and PIQE (Mild, Standard and Strong). The noise power spectrum (NPS) and task-based transfer function (TTF) for bone and acrylic inserts were computed. The detectability index (d’) was computed to model the detectability of the coronary lumen (350 Hounsfield units and 4-mm diameter) and non-calcified plaque (40 Hounsfield units and 2-mm diameter).

Results

Noise magnitude values were lower with PIQE than with AiCE (−13.4 ± 6.0 [standard deviation (SD)] % for Mild, -20.4 ± 4.0 [SD] % for Standard and -32.6 ± 2.6 [SD] % for Strong levels). The average NPS spatial frequencies shifted towards higher frequencies with PIQE than with AiCE (21.9 ± 3.5 [SD] % for Mild, 20.1 ± 3.0 [SD] % for Standard and 12.5 ± 3.5 [SD] % for Strong levels). The TTF values at fifty percent (f50) values shifted towards higher frequencies with PIQE than with AiCE for acrylic inserts but, for bone inserts, f50 values were found to be close. Whatever the dose and DLR level, d’ values of both simulated cardiac lesions were higher with PIQE than with AiCE. For the simulated coronary lumen, d’ values were better by 35.1 ± 9.3 (SD) % on average for all dose levels for Mild, 43.2 ± 5.0 (SD) % for Standard, and 62.6 ± 1.2 (SD) % for Strong levels.

Conclusion

Compared to AiCE, PIQE reduced noise, improved spatial resolution, noise texture and detectability of simulated cardiac lesions. PIQE seems to have a greater potential for dose reduction in cardiac CT acquisition.

El texto completo de este artículo está disponible en PDF.

Keywords : Cardiac CT, Deep-learning image reconstruction algorithm, Multidetector computed tomography, Task-based image quality assessment

Abbreviations : AICE, CNN, CT, CTDIvol, DLR, DNN, HU, NPS, PIQE, SD, SR-DLR, TTF


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 105 - N° 3

P. 110-117 - mars 2024 Regresar al número
Artículo precedente Artículo precedente
  • External validation of an artificial intelligence solution for the detection of elbow fractures and joint effusions in children
  • Michel Dupuis, Léo Delbos, Alexandra Rouquette, Catherine Adamsbaum, Raphaël Veil
| Artículo siguiente Artículo siguiente
  • Spectral photon-counting CT: Hype or hope for colorectal peritoneal metastases imaging?
  • Rémi Grange, Salim Si-Mohamed, Vahan Kepenekian, Sara Boccalini, Olivier Glehen, Pascal Rousset

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.