Predicting stroke with machine learning techniques in a sub-Saharan African population - 21/06/25

Doi : 10.1016/j.neuri.2025.100216 
Benjamin Segun Aribisala a, b, c, Deirdre Edward a, Godwin Ogbole d, Onoja M. Akpa e, Segun Ayilara d, Fred Sarfo f, Olusola Olabanjo b, Adekunle Fakunle g, h, Babafemi Oluropo Macaulay b, Joseph Yaria h, Joshua Akinyemi e, Albert Akpalu i, Kolawole Wahab j, Reginald Obiako k, Morenikeji Komolafe l, Lukman Owolabi m, Godwin Osaigbovo n, Akinkunmi Paul Okekunle o, Arti Singh p, Philip Ibinaye k, Osahon Osawata e, Adeniyi Sunday j, Ijezie Chukwuonye q, Carolyn Jenkins r, Hemant K. Tiwari s, Okechukwu Ogah e, Ruth Y. Laryea f, Daniel T. Lackland r, Oyedunni Arulogun t, Omotolani Ajala h, Rufus Akinyemi u, v, Bruce Ovbiagele w, 1, Steffen Sammet a, , 1 , Mayowa Owolabi h, v, ⁎⁎, 1
on behalf of the SIREN and SIBS Genomics investigators
a Department of Radiology, University of Chicago, Chicago, IL, USA 
b Department of Computer Science, Lagos State University, Lagos, Nigeria 
c Department of Computer Science, Oduduwa University, Nigeria 
d Department of Radiology, University of Ibadan, Ibadan, Nigeria 
e Department of Epidemiology and Medical Statistics, University of Ibadan, Nigeria 
f Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 
g Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Nigeria 
h Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria 
i Department of Medicine, University of Ghana Medical School, Accra, Ghana 
j Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria 
k Department of Medicine, Ahmadu Bello University, Zaria, Nigeria 
l Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria 
m Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria 
n Department of Medicine, University of Jos, Jos, Nigeria 
o Department of Food and Nutrition, Seoul National University, Korea 
p Department of Epidemiology and Biostatistics, Kwame Nkrumah University of Science and Technology, Ghana 
q Department of Medicine, Federal Medical Centre, Umuahia, Nigeria 
r Medical University of South Carolina, Charleston, USA 
s University of Alabama at Birmingham, Birmingham, AL, USA 
t Department of Health Promotion, University of Ibadan, Ibadan, Nigeria 
u Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria 
v Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Nigeria 
w Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, USA 

Corresponding author at: Department of Radiology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC2026 Chicago, IL 60637, USA.Department of RadiologyUniversity of Chicago Medicine5841 S. Maryland AvenueMC2026ChicagoIL60637USA⁎⁎Corresponding author at: Center for Genomics and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, University College Hospital, Ibadan, and Blossom Specialist Medical Center, Ibadan, Nigeria.Center for Genomics and Precision MedicineCollege of MedicineUniversity of IbadanUniversity College HospitalBlossom Specialist Medical CenterIbadanIbadanIbadanNigeria

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background

Stroke is the second leading cause of death and the third leading cause of disability globally, including Africa, which bears its largest burden. Accurate models are needed in Africa to predict and prevent stroke occurrence. The aim of this study was to identify the best machine learning (ML) algorithm for stroke prediction.

Methods

We assessed medical data of 4,236 subjects comprising 2,118 stroke patients and 2,118 controls from the SIREN database. Sixteen established vascular risk factors were evaluated in this study. These are addition of salt to food at table during eating, cardiac disease, diabetes mellitus, dyslipidemia, education, family history of cardiovascular disease, hypertension, income, low green leafy vegetable consumption, obesity, physical inactivity, regular meat consumption, regular sugar consumption, smoking, stress and use of tobacco. From these, we also selected the 11 topmost risk factors using Population-Attributable Risk ranking. Eleven ML models were built and empirically investigated using the 16 and the 11 risk factors.

Results

Our results showed that the 16 features-based classification (maximum AUC of 82.32%) had a slightly better performance than the 11 feature-based (maximum AUC 81.17%) algorithm. The result also showed that Artificial Neural Network (ANN) had the best performance amongst eleven algorithms investigated with AUC of 82.32%, sensitivity of 71.23%, specificity of 80.00%.

Conclusion

Machine Learning algorithms predicted stroke occurrence employing major risk factors in Sub-Saharan Africa better than regression models. Machine Learning, especially Artificial Neural Network, is recommended to enhance Afrocentric stroke prediction models for stroke risk factor quantification and control in Africa.

El texto completo de este artículo está disponible en PDF.

Highlights

Stroke incidence is reducing in the Western world but increasing in Africa.
Accurate computational models are needed in Africa to predict and prevent stroke occurrence.
We proposed 11 machine learning models for predicting stroke in Africa.
Our results show that machine learning has a high predictive value.
Our results also identified 16 major risk factors for stroke in Africa.

El texto completo de este artículo está disponible en PDF.

Keywords : Stroke, SIREN, Sub-Sahara Africa, Risk factors, Machine learning, Artificial neural network


Esquema


© 2025  Publicado por Elsevier Masson SAS.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 3

Artículo 100216- septembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Exploring community pharmacist's psychological intentions to adopt generative artificial intelligence (GenAI) chatbots for patient information, education, and counseling
  • Hafidz Ihsan Hidayatullah, Muhammad Taufiq Saifullah, Muhammad Thesa Ghozali, Ayesha Aziz
| Artículo siguiente Artículo siguiente
  • Beyond the numbers: App-enabled stroke prediction system for high-risk individuals in imbalanced datasets
  • Abrar Faiaz Eram, Aliva Sadnim Mahmud, Marwan Mostafa Khadem, Md Amimul Ihsan

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.