Beyond the numbers: App-enabled stroke prediction system for high-risk individuals in imbalanced datasets - 24/06/25

Doi : 10.1016/j.neuri.2025.100215 
Abrar Faiaz Eram a, Aliva Sadnim Mahmud a, Marwan Mostafa Khadem b, Md Amimul Ihsan c, d,
a Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh 
b Department of Japanese Studies, University of Dhaka, Dhaka, 1000, Bangladesh 
c Department of Electrical and Electronic Engineering, Jamalpur Science and Technology University, Jamalpur, 2010, Bangladesh 
d Department of Biomedical Physics and Technology, University of Dhaka, Dhaka, Bangladesh 

Corresponding author at: Department of Electrical and Electronic Engineering, Jamalpur Science and Technology University, Jamalpur, 2010, Bangladesh.Department of Electrical and Electronic EngineeringJamalpur Science and Technology UniversityJamalpur2010Bangladesh

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background:

Brain stroke, characterized by interrupted blood flow to the brain, poses significant mortality risks and quality-of-life impacts. While machine learning approaches show promise in stroke prediction, current research often relies on synthetic data to address dataset imbalance, potentially compromising real-world model performance in clinical settings.

Method:

This research proposes an alternative approach focusing on recall as the primary evaluation metric for stroke prediction, specifically targeting the reduction of false negatives. In the context of stroke diagnosis, where missed detection can lead to severe consequences or fatality, recall is crucial for directly measuring the model's ability to identify actual stroke cases.

Results:

Three superior models were identified: Logistic Regression, an Ensemble using Soft Voting (combining Gaussian Naive Bayes and Logistic Regression), and customized Support Vector Machine. Exceptional stroke prediction was achieved with recall values of 92%, 92%, and 94%, respectively. Interpretability is enhanced through SHAP applied to the best one. While previous methods showed recall values between 5.6% and 40%, this approach outperformed these benchmarks (94%). Current research emphasizes accuracy metrics, relying on oversampling, being inappropriate for sensitive medical datasets. The pitfall is a slight increase in false positives, which is tolerable because the cost of misdiagnosing a stroke patient far outweighs the reverse scenario.

Conclusions:

The research demonstrates the effectiveness of focusing on recall as an evaluation metric for stroke prediction, minimizing false negative predictions. To facilitate practical implementation, a mobile application incorporating the best-performing model was included. A primary screening which can supplement doctors in stroke diagnosis and prediction was proposed.

El texto completo de este artículo está disponible en PDF.

Graphical abstract




El texto completo de este artículo está disponible en PDF.

Highlights

Depiction of accuracy and weighted measures as inefficient evaluation metrics for the imbalanced stroke prediction dataset.
Assessment of multiple ML models without oversampling while adopting recall as the proper evaluation metric.
Integration of XAI through the use of SHAP and a Flutter based mobile application using the best performing models.

El texto completo de este artículo está disponible en PDF.

Keywords : Brain stroke prediction, Data imbalance, Recall, SHAP


Esquema


© 2025  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 3

Artículo 100215- septembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Predicting stroke with machine learning techniques in a sub-Saharan African population
  • Benjamin Segun Aribisala, Deirdre Edward, Godwin Ogbole, Onoja M. Akpa, Segun Ayilara, Fred Sarfo, Olusola Olabanjo, Adekunle Fakunle, Babafemi Oluropo Macaulay, Joseph Yaria, Joshua Akinyemi, Albert Akpalu, Kolawole Wahab, Reginald Obiako, Morenikeji Komolafe, Lukman Owolabi, Godwin Osaigbovo, Akinkunmi Paul Okekunle, Arti Singh, Philip Ibinaye, Osahon Osawata, Adeniyi Sunday, Ijezie Chukwuonye, Carolyn Jenkins, Hemant K. Tiwari, Okechukwu Ogah, Ruth Y. Laryea, Daniel T. Lackland, Oyedunni Arulogun, Omotolani Ajala, Rufus Akinyemi, Bruce Ovbiagele, Steffen Sammet, Mayowa Owolabi
| Artículo siguiente Artículo siguiente
  • EEG–fNIRS signal integration for motor imagery classification using deep learning and evidence theory
  • Mohammed E. Seno, Niladri Maiti, Maulik Patel, Mihirkumar M. Patel, Kalpesh B. Chaudhary, Ashish Pasaya, Babacar Toure

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.