S'abonner

Predicting gestational age using neonatal metabolic markers - 31/03/16

Doi : 10.1016/j.ajog.2015.11.028 
Kelli K. Ryckman, PhD a, b, , Stanton L. Berberich, PhD c, John M. Dagle, MD, PhD b
a Department of Epidemiology, University of Iowa, Iowa City, IA 
b Department of Pediatrics, University of Iowa, Iowa City, IA 
c State Hygienic Laboratory at the University of Iowa, Coralville, IA 

Corresponding author: Kelli K. Ryckman, PhD.

Abstract

Background

Accurate gestational age estimation is extremely important for clinical care decisions of the newborn as well as for perinatal health research. Although prenatal ultrasound dating is one of the most accurate methods for estimating gestational age, it is not feasible in all settings. Identifying novel and accurate methods for gestational age estimation at birth is important, particularly for surveillance of preterm birth rates in areas without routine ultrasound dating.

Objective

We hypothesized that metabolic and endocrine markers captured by routine newborn screening could improve gestational age estimation in the absence of prenatal ultrasound technology.

Study Design

This is a retrospective analysis of 230,013 newborn metabolic screening records collected by the Iowa Newborn Screening Program between 2004 and 2009. The data were randomly split into a model-building dataset (n = 153,342) and a model-testing dataset (n = 76,671). We performed multiple linear regression modeling with gestational age, in weeks, as the outcome measure. We examined 44 metabolites, including biomarkers of amino acid and fatty acid metabolism, thyroid-stimulating hormone, and 17-hydroxyprogesterone. The coefficient of determination (R2) and the root-mean-square error were used to evaluate models in the model-building dataset that were then tested in the model-testing dataset.

Results

The newborn metabolic regression model consisted of 88 parameters, including the intercept, 37 metabolite measures, 29 squared metabolite measures, and 21 cubed metabolite measures. This model explained 52.8% of the variation in gestational age in the model-testing dataset. Gestational age was predicted within 1 week for 78% of the individuals and within 2 weeks of gestation for 95% of the individuals. This model yielded an area under the curve of 0.899 (95% confidence interval 0.895−0.903) in differentiating those born preterm (<37 weeks) from those born term (≥37 weeks). In the subset of infants born small-for-gestational age, the average difference between gestational ages predicted by the newborn metabolic model and the recorded gestational age was 1.5 weeks. In contrast, the average difference between gestational ages predicted by the model including only newborn weight and the recorded gestational age was 1.9 weeks. The estimated prevalence of preterm birth <37 weeks’ gestation in the subset of infants that were small for gestational age was 18.79% when the model including only newborn weight was used, over twice that of the actual prevalence of 9.20%. The newborn metabolic model underestimated the preterm birth prevalence at 6.94% but was closer to the prevalence based on the recorded gestational age than the model including only newborn weight.

Conclusions

The newborn metabolic profile, as derived from routine newborn screening markers, is an accurate method for estimating gestational age. In small-for-gestational age neonates, the newborn metabolic model predicts gestational age to a better degree than newborn weight alone. Newborn metabolic screening is a potentially effective method for population surveillance of preterm birth in the absence of prenatal ultrasound measurements or newborn weight.

Le texte complet de cet article est disponible en PDF.

Key words : fetal growth, neonatal metabolism, preterm birth


Plan


 The authors report no conflict of interest.
 This research is supported, in part, by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R00 HD-065786). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development or the National Institutes of Health. This work was also supported by the Bill and Melinda Gates Foundation Grand Challenges Explorations grant, round 13.
 Cite this article as: Ryckman KK, Berberich SL, Dagle JM. Predicting gestational age using neonatal metabolic markers. Am J Obstet Gynecol 2016;214:515.e1-13.


© 2016  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 214 - N° 4

P. 515.e1-515.e13 - avril 2016 Retour au numéro
Article précédent Article précédent
  • Accurate prediction of gestational age using newborn screening analyte data
  • Kumanan Wilson, Steven Hawken, Beth K. Potter, Pranesh Chakraborty, Mark Walker, Robin Ducharme, Julian Little
| Article suivant Article suivant
  • The relationship of circulating proteins in early pregnancy with preterm birth
  • Anne M. Lynch, Brandie D. Wagner, Robin R. Deterding, Patricia C. Giclas, Ronald S. Gibbs, Edward N. Janoff, V. Michael Holers, Nanette F. Santoro

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.