S'abonner

On Image Segmentation Methods Applied to Glioblastoma: State of Art and New Trends - 02/06/16

Doi : 10.1016/j.irbm.2015.12.004 
C. Dupont a, , 1 , N. Betrouni a, 2, N. Reyns a, b, 3, M. Vermandel a, b, 2
a Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France 
b CHU Lille, Neurosurgery Department, F-59000 Lille, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 13
Iconographies 7
Vidéos 0
Autres 0

Abstract

Because of high heterogeneity and invasiveness, treatment of GlioBlastoma Multiform (GBM) still remains a complex challenge. Several recent advanced therapies have improved precision of treatment deliverance. Multimodality imaging plays an increasingly important role in this process and images segmentation has become an essential part of the pipeline of standard treatment planning system. With the sophistication of multimodality information, the development of reliable and robust segmentation algorithms to overcome manual segmentation and optimize targeted treatment is highly expected.

In this paper, we first introduce targeted therapies applied in the GBM clinical care, from routine or research. Different segmentation methods from state of the art are highlighted to achieve GBM delineation. New trends in GBM segmentation such as machine learning and multimodal features are discussed. These additional frameworks may achieve segmentation with refining capacities, active tumour probability mapping and, even, tumour relapse prediction capacities.

Le texte complet de cet article est disponible en PDF.

Keywords : Segmentation, Neuro-oncology, Radiation oncology, High-grade glioma treatment, Targeted therapies


Plan


© 2016  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 37 - N° 3

P. 131-143 - juin 2016 Retour au numéro
Article précédent Article précédent
  • Editorial Board
| Article suivant Article suivant
  • Latency Characterization of Gated Radiotherapy Treatment Beams Using a PIN Diode Circuit
  • M. Lempart, M. Kügele, L. Ambolt, B. Blad, F. Nordström

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.