Un algorithme dérivé de l'algorithme de Metropolis - 01/11/17
Résumé |
La physique statistique et la modélisation stochastique en économie partagent les mêmes bases mathématiques, données par la distribution de Gibbs, mais les systèmes présentent des caractéristiques très différentes. Un système économique type peut ainsi être décrit par une statistique de Bose–Einstein avec un petit nombre d'états non dégénérés et une « température » infinitésimale ; il se trouve ainsi dans des conditions où l'approximation de la configuration la plus probable devient invalide. Par conséquent, le calcul de la solution exacte nécessite le recours à un algorithme de Metropolis, qui estime une distribution de Gibbs. On propose ici un algorithme infiniment plus efficace. Sur des petits systèmes pour lesquels la distribution moyenne sur l'ensemble canonique peut être établie, on compare cette distribution aux solutions calculées.
Le texte complet de cet article est disponible en PDF.Abstract |
Statistical physics and stochastic modelling in economic sciences share the same mathematical bases given by the Gibbs distribution, but system characteristics are different. For instance, an economic system can be described by a Bose–Einstein statistics with few non-degenerate states and an infinitesimal “temperature”; under such conditions, the approximation of the most probable configuration is invalid. Therefore, the calculus of the exact solution needs using a Metropolis algorithm, which estimates a Gibbs distribution. This paper presents a much more efficient algorithm. For small systems, the exact distribution on the canonical set can be computed, and then this distribution is compared to the solutions of the old and new algorithms.
Le texte complet de cet article est disponible en PDF.Plan
Vol 355 - N° 10
P. 1104-1110 - octobre 2017 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.