Simplicial complexes and closure systems induced by indistinguishability relations - 01/12/17
| pages | 31 |
| Iconographies | 6 |
| Vidéos | 0 |
| Autres | 0 |
Abstract |
In this paper, we develop in a more general mathematical context the notion of indistinguishability, which in graph theory has recently been investigated as a symmetry relation with respect to a fixed vertex subset. The starting point of our analysis is to consider a set Ω of functions defined on a universe set U and to define an equivalence relation on U for any subset
in the following way:
if
for any function
. By means of this family of relations, we introduce the indistinguishability relation ≈ on the power set
as follows: for
, we set
if the relations
and
coincide. We use then the indistinguishability relation ≈ to introduce several set families on Ω that have interesting order, matroidal and combinatorial properties. We call the above set families the indistinguishability structures of the function system
. Furthermore, we obtain a closure system and an abstract simplicial complex interacting each other by means of three hypergraphs having relevance in both theoretical computer science and graph theory. The first part of this paper is devoted to investigate the basic mathematical properties of the indistinguishability structures for arbitrary function systems. The second part deals with some specific cases of study derived from simple undirected graphs and the usual Euclidean real line.
Résumé |
Nous développons dans ce texte la notion d'indistinguabilité dans un contexte mathématique plus général. Cette notion a en effet été récemment étudiée en théorie des graphes, comme une relation de symétrie relativement aux sommets fixés. Le point de départ de notre analyse est de considérer un ensemble Ω de fonctions définies sur un ensemble univers U et de définir pour tout sous-ensemble une relation d'équivalence
sur U par
si
pour toute fonction
. Au moyen de cette famille de relations, nous introduisons la relation d'indistinguabilité ≈ sur l'ensemble puissance
de la façon suivante : pour
, nous posons
si les relations
et
coïncident. Nous utilisons cette relation d'indistinguabilité ≈ pour définir plusieurs familles d'ensembles sur Ω ayant d'intéressantes propriétés d'ordre, de matroïde et combinatoires. Nous appelons les familles d'ensembles ci-dessus les structures indistinguables du système de fonctions
. De plus, nous obtenons un système de clôture et un complexe simplicial abstrait interagissant l'un l'autre au travers de trois hypergraphes, qui sont significatifs aussi bien en théorie des graphes qu'en informatique théorique. La première partie du texte est dédiée à l'étude les propriétés mathématiques élémentaires des structures d'indistinguabilité pour les systèmes de fonctions arbitraires. La seconde partie traite de quelques cas particuliers dérivés des graphes non orientés simples et de la droite euclidienne réelle usuelle.
Plan
Vol 355 - N° 9
P. 991-1021 - septembre 2017 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?

