Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging - 13/04/18
Abstract |
Background and Aims |
Magnifying narrow-band imaging (M-NBI) is important in the diagnosis of early gastric cancers (EGCs) but requires expertise to master. We developed a computer-aided diagnosis (CADx) system to assist endoscopists in identifying and delineating EGCs.
Methods |
We retrospectively collected and randomly selected 66 EGC M-NBI images and 60 non-cancer M-NBI images into a training set and 61 EGC M-NBI images and 20 non-cancer M-NBI images into a test set. After preprocessing and partition, we determined 8 gray-level co-occurrence matrix (GLCM) features for each partitioned 40 × 40 pixel block and calculated a coefficient of variation of 8 GLCM feature vectors. We then trained a support vector machine (SVMLv1) based on variation vectors from the training set and examined in the test set. Furthermore, we collected 2 determined P and Q GLCM feature vectors from cancerous image blocks containing irregular microvessels from the training set, and we trained another SVM (SVMLv2) to delineate cancerous blocks, which were compared with expert-delineated areas for area concordance.
Results |
The diagnostic performance revealed accuracy of 96.3%, precision (positive predictive value [PPV]) of 98.3%, recall (sensitivity) of 96.7%, and specificity of 95%, at a rate of 0.41 ± 0.01 seconds per image. The performance of area concordance, on a block basis, demonstrated accuracy of 73.8% ± 10.9%, precision (PPV) of 75.3% ± 20.9%, recall (sensitivity) of 65.5% ± 19.9%, and specificity of 80.8% ± 17.1%, at a rate of 0.49 ± 0.04 seconds per image.
Conclusions |
This pilot study demonstrates that our CADx system has great potential in real-time diagnosis and delineation of EGCs in M-NBI images.
Le texte complet de cet article est disponible en PDF.Abbreviations : CADx, EGC, ESD, GLCM, M-NBI, NBI, PPV, SVM, SVMLv1, SVMLv2
Plan
| DISCLOSURE: All authors disclosed no financial relationships relevant to this publication. |
|
| If you would like to chat with an author of this publication, you may contact Dr Uedo at noriya.uedo@gmail.com. |
Vol 87 - N° 5
P. 1339-1344 - mai 2018 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
