Médecine

Paramédical

Autres domaines


S'abonner

Eigenspace Time Frequency Based Features for Accurate Seizure Detection from EEG Data - 13/03/19

Doi : 10.1016/j.irbm.2019.02.002 
M. Deriche , S. Arafat , S. Al-Insaif , M. Siddiqui
 King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 11
Iconographies 6
Vidéos 0
Autres 0

Abstract

Background

Epilepsy is a neurological disorder that affects over 2% of the world population. Epilepsy patients suffer from recurring seizures that can be very harmful. The unpredictability of seizures is a major concern for medical practitioners because uncontrollable seizures can lead to sudden death and morbidity. A system that could warn patients and doctors alike about the impending seizure event would dramatically enhance the quality of life for patients.

Methods

While most previous research works focused on using signal processing tools appropriate for stationary signals, we propose here to use time and frequency (TF) analysis to extract features capable of discriminating normal from abnormal EEG traces (both ictal and interictal). The features are extracted using Singular Value Decomposition (SVD) of the EEG signal Time Frequency matrix. The left singular vectors of the time frequency matrix are used to obtain robust feature vectors. In contrast to existing techniques, the proposed TF-based technique can be used to detect the specific moments of seizure occurrences in time so that this information is used to discriminate interictal from ictal EEG traces. Instead of extracting the features directly from the TF matrix, we transform the left eigenvectors obtained from the SVD of the TF matrix into a feature vector that behaves like to a probability density function.

Results

We show that almost all classical classification techniques achieve excellent seizure detection results when used with the proposed TF features, irrespective of the classifier used. Contrary to existing works, we test our approach across several real-life scenarios covering 2, 3, and 5 possible classes of data. Our tests provided consistent results across different scenarios. The results, under different scenarios, outperformed existing ones achieving consistently more than 97.3% and up to 99.5% in terms of accuracy, sensitivity, and specificity.

Conclusion

Experimental results show that the novel features have successfully represented the characteristics of the underlying disease phenomenon from EEG data. Also, we conclude that learning based classifiers are better suited for this application, compared to Bayesian classifiers that have difficulty in adapting to the varying nature of the features' probability distribution function.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

A new algorithm for robust feature extraction from EEG for seizure detection.
A Time Frequency based representation with SVD is used for EEG traces modelling.
The eigenvectors from the TF-SVD decomposition are transformed into a pdf.
A comprehensive analysis of performance across different classifiers is carried.
Several scenarios (including 2, 3, and 5 classes of EEG data) are considered.

Le texte complet de cet article est disponible en PDF.

Keywords : Electroencephalogram (EEG), EEG signals classification, Time frequency analysis, Singular value decomposition, Seizure detection, Machine learning based classifiers


Plan


© 2019  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 40 - N° 2

P. 122-132 - mars 2019 Retour au numéro
Article précédent Article précédent
  • EEG and Cognitive Biomarkers Based Mild Cognitive Impairment Diagnosis
  • N. Sharma, M.H. Kolekar, K. Jha, Y. Kumar

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.