Médecine

Paramédical

Autres domaines


S'abonner

R-Peak Detection Using Chaos Analysis in Standard and Real Time ECG Databases - 07/11/19

Doi : 10.1016/j.irbm.2019.10.001 
V. Gupta a, , M. Mittal b , V. Mittal b
a KIET Group of Institutions, Muradnagar-201206, Ghaziabad, UP, India 
b National Institute of Technology, Kurukshetra-136119, Haryana, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 14
Iconographies 12
Vidéos 0
Autres 0

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Chaos analysis as a feature extraction technique.
Independent principal component analysis (IPCA) as a pre-processing technique.
R-peak detection using principal component analysis (PCA).
Research has verified in the physioNet database (PN DB), and real-time ECG database (RT DB).

Le texte complet de cet article est disponible en PDF.

Abstract

Objectives

Timely and accurate R-peak detection is very important for analyzing electrocardiogram (ECG) signal in critical conditions. The main obstacle in observing the correct relation between underlying physiology and features is that there is no specific method to select the features that are needed for diagnosis of a particular heart disease. Therefore, choice of an advanced feature extraction technique is a major concern especially due to non-linear nature of the ECG signal.

Material and methods

In this study, physioNet (standard) and real-time ECG records have been used. During recording, ECG signal is affected by various noises/interferences which create further challenges in ECG signal analysis. Hence, it requires an effective pre-processing, advanced feature extraction and detection techniques. In this paper, independent principal component analysis (IPCA) is used for pre-processing, since it possesses good characteristic of both principal component analysis (PCA) and independent component analysis (ICA). Due to non-linear nature of ECG signals, chaos analysis is applied in feature extraction stage for different ECG databases. The monitoring and wide description of chaotic patterns of heartbeats are prime concerns for cardiologists. Chaos analysis has been used by estimating different attractors against various time delay dimensions. Correct R-peak detection is useful in diagnosing cardiac diseases and performance of the proposed methodology has been evaluated in terms of sensitivity (Se), positive predictivity (PP), and detection error rate (DER) for both PhysioNet (PN DB) and real-time (RT DB) databases.

Results-case-I: Without pre-processing

In this case, R-peaks have been detected using chaos analysis+PCA. The proposed method yields Se of 99.91%, PP of 99.93%, and DER of 0.163% for PN DB and Se of 99.77%, PP of 99.83%, and DER of 0.387% for RT DB.

Case-II: With pre-processing

In this case, R-peaks have been detected using IPCA+chaos analysis+PCA. The proposed method yields Se of 99.95%, PP of 99.96%, and DER of 0.093% for PN DB and Se of 99.96%, PP of 99.97%, and DER of 0.055% for RT DB.

Conclusion

The proposed technique outperforms the other existing works on various selected evaluation parameters even without pre-processing. Hence, the proposed technique has successfully demonstrated its ability to discriminate different types of heartbeats in most of the critical situations. Therefore, there are strong merits in using chaos analysis as a feature extraction method to reduce the incidence of false diagnosis.

Le texte complet de cet article est disponible en PDF.

Keywords : Electrocardiogram (ECG), Independent principal component analysis (IPCA), Chaos analysis, R-peak detection


Plan


© 2019  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 40 - N° 6

P. 341-354 - décembre 2019 Retour au numéro
Article précédent Article précédent
  • An Efficient Automated Algorithm for Distinguishing Normal and Abnormal ECG Signal
  • M.K. Moridani, M. Abdi Zadeh, Z. Shahiazar Mazraeh
| Article suivant Article suivant
  • Determination of the Blood, Hormone and Obesity Value Ranges that Indicate the Breast Cancer, Using Data Mining Based Expert System
  • S.B. Akben

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.