S'abonner

Prediction of vaginal birth after cesarean deliveries using machine learning - 26/07/20

Doi : 10.1016/j.ajog.2019.12.267 
Michal Lipschuetz, RN, MPH, MSc a, b, Joshua Guedalia, MBA a, Amihai Rottenstreich, MD b, Michal Novoselsky Persky, MD b, Sarah M. Cohen, MPH b, Doron Kabiri, MD b, Gabriel Levin, MD b, Simcha Yagel, MD b, , Ron Unger, PhD a, Yishai Sompolinsky, MD, MPH b
a The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel 
b Obstetrics & Gynecology Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel 

Corresponding author: Simcha Yagel, MD.

Abstract

Background

Efforts to reduce cesarean delivery rates to 12–15% have been undertaken worldwide. Special focus has been directed towards parturients who undergo a trial of labor after cesarean delivery to reduce the burden of repeated cesarean deliveries. Complication rates are lowest when a vaginal birth is achieved and highest when an unplanned cesarean delivery is performed, which emphasizes the need to assess, in advance, the likelihood of a successful vaginal birth after cesarean delivery. Vaginal birth after cesarean delivery calculators have been developed in different populations; however, some limitations to their implementation into clinical practice have been described. Machine-learning methods enable investigation of large-scale datasets with input combinations that traditional statistical analysis tools have difficulty processing.

Objective

The aim of this study was to evaluate the feasibility of using machine-learning methods to predict a successful vaginal birth after cesarean delivery.

Study Design

The electronic medical records of singleton, term labors during a 12-year period in a tertiary referral center were analyzed. With the use of gradient boosting, models that incorporated multiple maternal and fetal features were created to predict successful vaginal birth in parturients who undergo a trial of labor after cesarean delivery. One model was created to provide a personalized risk score for vaginal birth after cesarean delivery with the use of features that are available as early as the first antenatal visit; a second model was created that reassesses this score after features are added that are available only in proximity to delivery.

Results

A cohort of 9888 parturients with 1 previous cesarean delivery was identified, of which 75.6% of parturients (n=7473) attempted a trial of labor, with a success rate of 88%. A machine-learning–based model to predict when vaginal delivery would be successful was developed. When features that are available at the first antenatal visit are used, the model showed a receiver operating characteristic curve with area under the curve of 0.745 (95% confidence interval, 0.728–0.762) that increased to 0.793 (95% confidence interval, 0.778–0.808) when features that are available in proximity to the delivery process were added. Additionally, for the later model, a risk stratification tool was built to allocate parturients into low-, medium-, and high-risk groups for failed trial of labor after cesarean delivery. The low- and medium-risk groups (42.4% and 25.6% of parturients, respectively) showed a success rate of 97.3% and 90.9%, respectively. The high-risk group (32.1%) had a vaginal delivery success rate of 73.3%. Application of the model to a cohort of parturients who elected a repeat cesarean delivery (n=2145) demonstrated that 31% of these parturients would have been allocated to the low- and medium-risk groups had a trial of labor been attempted.

Conclusion

Trial of labor after cesarean delivery is safe for most parturients. Success rates are high, even in a population with high rates of trial of labor after cesarean delivery. Application of a machine-learning algorithm to assign a personalized risk score for a successful vaginal birth after cesarean delivery may help in decision-making and contribute to a reduction in cesarean delivery rates. Parturient allocation to risk groups may help delivery process management.

Le texte complet de cet article est disponible en PDF.

Key words : machine-learning, personalized, prediction, trial of labor, vaginal birth after cesarean delivery


Plan


 Supported by the Ministry of Science and Technology, Israel (M.L.).
 The authors report no conflict of interest.
 Cite this article as: Lipschuetz M, Guedalia J, Rottenstreich A, et al. Prediction of vaginal birth after cesarean deliveries using machine learning. Am J Obstet Gynecol 2020;222:613.e1-12.


© 2020  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 222 - N° 6

P. 613.e1-613.e12 - juin 2020 Retour au numéro
Article précédent Article précédent
  • Zika virus detection in amniotic fluid and Zika-associated birth defects
  • Marcela Mercado, Elizabeth C. Ailes, Marcela Daza, Van T. Tong, Johana Osorio, Diana Valencia, Angelica Rico, Romeo R. Galang, Maritza González, Jessica N. Ricaldi, Kayla N. Anderson, Nazia Kamal, Jennifer D. Thomas, Julie Villanueva, Veronica K. Burkel, Dana Meaney-Delman, Suzanne M. Gilboa, Margaret A. Honein, Denise J. Jamieson, Martha L. Ospina
| Article suivant Article suivant
  • Utility of follow-up standard sonography for fetal anomaly detection
  • John J. Byrne, Jamie L. Morgan, Diane M. Twickler, Donald D. McIntire, Jodi S. Dashe

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.