S'abonner

Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit - 21/09/20

Doi : 10.1016/j.gie.2020.04.044 
Sravanthi Parasa, MD, MPH 1, Michael Wallace, MD, MPH 2, Ulas Bagci, PhD 3, Mark Antonino, MS 4, Tyler Berzin, MD 5, Michael Byrne, MD 6, Haydar Celik, PhD 7, 8, Keyvan Farahani, PhD 9, Martin Golding, MD 10, Seth Gross, MD 11, Vafa Jamali, BCom 12, Paulo Mendonca, PhD 13, Yuichi Mori, MD, PhD 14, Andrew Ninh 15, Alessandro Repici, MD 16, Douglas Rex, MD 17, Kris Skrinak, MD 18, Shyam J. Thakkar, MD FASGE 19, 20, Jeanin E. van Hooft, MD, PhD, MBA 21, John Vargo, MD, MPH 22, Honggang Yu, MD 23, Ziyue Xu, PhD 24, Prateek Sharma, MD, FACG, FACP 25
1 Department of Gastroenterology, Swedish Medical Center, Seattle, Washington, USA 
2 Department of Medicine, Mayo Clinic, Director, Digestive Diseases Research Program, Editor in Chief Gastrointestinal Endoscopy, President, Florida Gastroenterology Society, Jacksonville, Florida, USA 
3 Artificial Intelligence in Medicine (AIM), Center for Research in Computer Vision, University of Central Florida, Orlando, Florida, USA 
4 Gastroenterology and Endoscopy Devices Team, Division of Renal, Gastrointestinal, Obesity and Transplant Devices, Office of Gastrorenal, ObGyn, General Hospital and Urology Devices, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA 
5 Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA 
6 Division of Gastroenterology, Vancouver General Hospital/University of British Columbia, Vancouver, British Columbia, Canada 
7 Clinical Center, National Institutes of Health, Bethesda, Maryland, USA 
8 George Washington University, Washington, DC, USA 
9 Image-Guided Interventions and Imaging Informatics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA 
10 Gastroenterology and Endoscopy Devices Team, Division of Renal, Gastrointestinal, Obesity and Transplant Devices, Office of Gastrorenal, ObGyn, General Hospital and Urology Devices, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA 
11 Department of Medicine, Division of Gastroenterology, Clinical Care and Quality, NYU Langone Health, New York, New York, USA 
12 Respiratory, Gastrointestinal & Informatics, Medtronic Inc, Boulder, Colorado, USA 
13 Digestive Disease Center, Showa University, Northern Yokohama Hospital, Yokohama, Japan 
14 University of Tokyo, Tokyo, Japan 
15 Docbot, Irvine, California, USA 
16 Digestive Endoscopy Unit, Humanitas, Research Hospital, Milan, Italy 
17 Departments of Medicine, Endoscopy, and Gastroenterology, Indiana University of School of Medicine, Indianapolis, Indiana, USA 
18 Global Machine Learning Segment Lead, Amazon Web Services, New York, New York, USA 
19 Department of Endoscopy, Allegheny Health Network, Department of Medicine, Temple University, Philadelphia, Pennsylvania, USA 
20 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 
21 Gastrointestinal Oncology Centre Amsterdam, Amsterdam, The Netherlands 
22 Department of Medicine, Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA 
23 Division of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China 
24 Medical Image Analysis, NVIDIA, Bethesda, Maryland, USA 
25 Division of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Kansas, USA 

Abstract

Background and Aims

Artificial intelligence (AI), specifically deep learning, offers the potential to enhance the field of GI endoscopy in areas ranging from lesion detection and classification to quality metrics and documentation. Progress in this field will be measured by whether AI implementation can lead to improved patient outcomes and more efficient clinical workflow for GI endoscopists. The aims of this article are to report the findings of a multidisciplinary group of experts focusing on issues in AI research and applications related to gastroenterology and endoscopy, to review the current status of the field, and to produce recommendations for investigators developing and studying new AI technologies for gastroenterology.

Methods

A multidisciplinary meeting was held on September 28, 2019, bringing together academic, industry, and regulatory experts in diverse fields including gastroenterology, computer and imaging sciences, machine learning, computer vision, U.S. Food and Drug Administration, and the National Institutes of Health. Recent and ongoing studies in gastroenterology and current technology in AI were presented and discussed, key gaps in knowledge were identified, and recommendations were made for research that would have the highest impact in making advances and implementation in the field of AI to gastroenterology.

Results

There was a consensus that AI will transform the field of gastroenterology, particularly endoscopy and image interpretation. Powered by advanced machine learning algorithms, the use of computer vision in endoscopy has the potential to result in better prediction and treatment outcomes for patients with gastroenterology disorders and cancer. Large libraries of endoscopic images, “EndoNet,” will be important to facilitate development and application of AI systems. The regulatory environment for implementation of AI systems is evolving, but common outcomes such as colon polyp detection have been highlighted as potential clinical trial endpoints. Other threshold outcomes will be important, as well as clarity on iterative improvement of clinical systems.

Conclusions

Gastroenterology is a prime candidate for early adoption of AI. AI is rapidly moving from an experimental phase to a clinical implementation phase in gastroenterology. It is anticipated that the implementation of AI in gastroenterology over the next decade will have a significant and positive impact on patient care and clinical workflows. Ongoing collaboration among gastroenterologists, industry experts, and regulatory agencies will be important to ensure that progress is rapid and clinically meaningful. However, several constraints and areas will benefit from further exploration, including potential clinical applications, implementation, structure and governance, role of gastroenterologists, and potential impact of AI in gastroenterology.

Le texte complet de cet article est disponible en PDF.

Abbreviations : ADR, AI, CAD, FDA


Plan


 DISCLOSURE: The following authors disclosed financial relationships: M. Wallace: Consultant for Virgo Inc, Cosmo/Aries Pharmaceuticals, Anx Robotica, Covidien, GI Supply, Boston Scientific, Endokey, Endostart, and Microtek; stock in Virgo Inc; research grants from Cosmo/Aries Pharmaceuticals, Fujifilm, Boston Scientific, Olympus, Medtronic, and Ninepoint Medical; other compensation from Synergy Pharmaceuticals and Cook Medical. T. Berzin: Consultant for Wilson AI, Fujifilm, and Medtronic. M. Byrne: Chief executive officer for Satisfai Health; co-development agreement with Olympus in AI and colon polyps with Ai4gi. H. Celik, S. Gross: Consultant for Olympus. Y. Mori: Consultant and speaker for Olympus. A. Ninh: Financial and equity in and cofounder and chief executive officer for Docbot Inc. A. Repici: Consultant for Boston Scientific and Medtronic; research grant from Fujifilm. D. Rex: Consultant for Olympus, Boston Scientific, Covidien/Medtronic, Aries Pharmaceutical, Braintree Laboratories, Lumendl, Ltd, Norgine, Endokey, and GI Supply; research grants from Olympus, Endoaid, Medivators, and Eribe USA Inc; ownership in Satisfai Health. S.J. Thakkar: Consultant for Olympus and Boston Scientific. J. E. van Hooft: Consultant for Cook Medical, Boston Scientific, and Medtronic; research grants from Cook Medical and Abbott. P. Sharma: Consultant for Olympus and Boston Scientific; research grants from Cosmo Pharmaceuticals, CDx Laboratories, Erbe, Fujifilm, Medtronic, and US Endoscopy. All other authors disclosed no financial relationships.


© 2020  American Society for Gastrointestinal Endoscopy. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 92 - N° 4

P. 938 - octobre 2020 Retour au numéro
Article précédent Article précédent
  • Critical importance of early introduction of prevention measures for SARS-CoV-2 infection in endoscopy units
  • Àngels Ginès, Glòria Fernández-Esparrach, Maria Pellisé, Oriol Sendino, Francesc Balaguer, Josep Llach, Begoña González-Suárez, Swagotika Saló
| Article suivant Article suivant
  • Impact of COVID-19 on colorectal cancer disparities and the way forward
  • Sophie Balzora, Rachel B. Issaka, Adjoa Anyane-Yeboa, Darrell M. Gray, Folasade P. May

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.