Usefulness of Semisupervised Machine-Learning-Based Phenogrouping to Improve Risk Assessment for Patients Undergoing Transcatheter Aortic Valve Implantation - 11/11/20

Résumé |
Semisupervised machine-learning methods are able to learn from fewer labeled patient data. We illustrate the potential use of a semisupervised automated machine-learning (AutoML) pipeline for phenotyping patients who underwent transcatheter aortic valve implantation and identifying patient groups with similar clinical outcome. Using the Transcatheter Valve Therapy registry data, we divided 344 patients into 2 sequential cohorts (cohort 1, n = 211, cohort 2, n = 143). We investigated patient similarity analysis to identify unique phenogroups of patients in the first cohort. We subsequently applied the semisupervised AutoML to the second cohort for developing automatic phenogroup labels. The patient similarity network identified 5 patient phenogroups with substantial variations in clinical comorbidities and in-hospital and 30-day outcomes. Cumulative assessment of patients from both cohorts revealed lowest rates of procedural complications in Group 1. In comparison, Group 5 was associated with higher rates of in-hospital cardiovascular mortality (odds ratio [OR] 35, 95% confidence interval [CI] 4 to 309, p = 0.001), in-hospital all-cause mortality (OR 9, 95% CI 2 to 33, p = 0.002), 30-day cardiovascular mortality (OR 18, 95% CI 3 to 94, p <0.001), and 30-day all-cause mortality (OR 3, 95% CI 1.2 to 9, p = 0.02) . For 30-day cardiovascular mortality, using phenogroup data in conjunction with the Society of Thoracic Surgeon score improved the overall prediction of mortality versus using the Society of Thoracic Surgeon scores alone (AUC 0.96 vs AUC 0.8, p = 0.02). In conclusion, we illustrate that semisupervised AutoML platforms identifies unique patient phenogroups who have similar clinical characteristics and overall risk of adverse events post-transcatheter aortic valve implantation.
Le texte complet de cet article est disponible en PDF.Plan
| Funding: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. |
|
| Declaration of Helsinki: Our study complies with the tenets of the Declaration of Helsinki. In addition, the locally appointed ethics committee has approved the research protocol used in this study, and informed consent has been obtained from the subjects (or their legally authorized representative). |
Vol 136
P. 122-130 - décembre 2020 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
