S'abonner

Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study - 31/12/20

Doi : 10.1016/S1470-2045(20)30535-0 
Rikiya Yamashita, MD a, c, Jin Long, PhD c, Teri Longacre, ProfMD b, Lan Peng, MD d, Gerald Berry, ProfMD b, Brock Martin, MD b, John Higgins, ProfMD b, Daniel L Rubin, ProfMD a, c, *, Jeanne Shen, MD b, c, *
a Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA 
b Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA 
c Center for Artificial Intelligence in Medicine and Imaging, Stanford University, Stanford, CA, USA 
d Department of Pathology, University of Texas, Southwestern Medical Center, Dallas, TX, USA 

* Correspondence to: Dr Jeanne Shen, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Pathology Stanford University School of Medicine Stanford CA 94305 USA

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model’s performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.

Le texte complet de cet article est disponible en PDF.

Plan


© 2021  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 22 - N° 1

P. 132-141 - janvier 2021 Retour au numéro
Article précédent Article précédent
  • CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study
  • Mark H O’Hara, Eileen M O’Reilly, Gauri Varadhachary, Robert A Wolff, Zev A Wainberg, Andrew H Ko, George Fisher, Osama Rahma, Jaclyn P Lyman, Christopher R Cabanski, Rosemarie Mick, Pier Federico Gherardini, Lacey J Kitch, Jingying Xu, Theresa Samuel, Joyson Karakunnel, Justin Fairchild, Samantha Bucktrout, Theresa M LaVallee, Cheryl Selinsky, Jacob E Till, Erica L Carpenter, Cécile Alanio, Katelyn T Byrne, Richard O Chen, Ovid C Trifan, Ute Dugan, Christine Horak, Vanessa M Hubbard-Lucey, E John Wherry, Ramy Ibrahim, Robert H Vonderheide
| Article suivant Article suivant
  • Efficacy and safety of oral panobinostat plus subcutaneous bortezomib and oral dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma (PANORAMA 3): an open-label, randomised, phase 2 study
  • Jacob P Laubach, Fredrik Schjesvold, Mário Mariz, Meletios A Dimopoulos, Ewa Lech-Maranda, Ivan Spicka, Vania T M Hungria, Tatiana Shelekhova, Andre Abdo, Lutz Jacobasch, Chantana Polprasert, Roman Hájek, Árpád Illés, Tomasz Wróbel, Anna Sureda, Meral Beksac, Iara Z Gonçalves, Joan Bladé, S Vincent Rajkumar, Ajai Chari, Sagar Lonial, Andrew Spencer, Pierre Maison-Blanche, Philippe Moreau, Jesus F San-Miguel, Paul G Richardson

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.