Phenomapping Heart Failure with Preserved Ejection Fraction Using Machine Learning Cluster Analysis : Prognostic and Therapeutic Implications - 26/05/21

Résumé |
Heart failure with preserved ejection fraction (HFpEF) is characterized by a high rate of hospitalization and mortality (up to 84% at 5 years), which are similar to those observed for heart failure with reduced ejection fraction (HFrEF). These epidemiologic data claim for the development of specific and innovative therapies to reduce the burden of morbidity and mortality associated with this disease. Compared with HFrEF, which is due to a primary myocardial damage (eg ischemia, cardiomyopathies, toxicity), a heterogeneous etiologic background characterizes HFpEF. The authors discuss these phenotypes and specificities for defining therapeutic strategies that could be proposed according to phenotypes.
Le texte complet de cet article est disponible en PDF.Keywords : Heart failure with preserved ejection fraction, Machine learning, Phenomapping, Prognosis, Precision medicine, Targeted treatment
Plan
| No conflicts of interest for this article, and nothing to disclose for any of the authors. |
|
| Funded by: FRENCH. |
Vol 17 - N° 3
P. 499-518 - juillet 2021 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
