S'abonner

Development and Validation of Machine Learning Models to Predict Admission From Emergency Department to Inpatient and Intensive Care Units - 27/07/21

Doi : 10.1016/j.annemergmed.2021.02.029 
Alexander Fenn, BA, MA a, b, , Connor Davis, BS, MS b, Daniel M. Buckland, MD, PhD c, Neel Kapadia, MD c, Marshall Nichols, BS, MS b, Michael Gao, BS, MS b, William Knechtle, MPH, MBA b, Suresh Balu, MS, MBA b, Mark Sendak, MD, MPP b, B.Jason Theiling, MD, MS c
a Duke University School of Medicine, Durham, NC 
b Duke Institute of Health Innovation, Durham, NC 
c Division of Emergency Medicine, Department of Surgery, Duke University School of Medicine, Durham, NC 

Corresponding Author.

Abstract

Study objective

This study aimed to develop and validate 2 machine learning models that use historical and current-visit patient data from electronic health records to predict the probability of patient admission to either an inpatient unit or ICU at each hour (up to 24 hours) of an emergency department (ED) encounter. The secondary goal was to provide a framework for the operational implementation of these machine learning models.

Methods

Data were curated from 468,167 adult patient encounters in 3 EDs (1 academic and 2 community-based EDs) of a large academic health system from August 1, 2015, to October 31, 2018. The models were validated using encounter data from January 1, 2019, to December 31, 2019. An operational user dashboard was developed, and the models were run on real-time encounter data.

Results

For the intermediate admission model, the area under the receiver operating characteristic curve was 0.873 and the area under the precision-recall curve was 0.636. For the ICU admission model, the area under the receiver operating characteristic curve was 0.951 and the area under the precision-recall curve was 0.461. The models had similar performance in both the academic- and community-based settings as well as across the 2019 and real-time encounter data.

Conclusion

Machine learning models were developed to accurately make predictions regarding the probability of inpatient or ICU admission throughout the entire duration of a patient’s encounter in ED and not just at the time of triage. These models remained accurate for a patient cohort beyond the time period of the initial training data and were integrated to run on live electronic health record data, with similar performance.

Le texte complet de cet article est disponible en PDF.

Plan


 Please see page 291 for the Editor’s Capsule Summary of this article.
 Supervising editor: Stephen Schenkel, MD, MPP. Specific detailed information about possible conflict of interest for individual editors is available at editors.
 Author contributions: BJT developed and wrote the initial proposal for this project. AF drafted and incorporated revisions for all versions of the manuscript. Edits to the manuscript were provided by all authors. AF, CD, MG, MS, and MN contributed to data gathering, data curation, and model development. WK and MS helped guide model refinements and model implementation, and WK also developed the clinical user dashboard. SB provided institutional support and oversaw the implementation of the project. BJT, NK, and DB served as clinical liaisons for the project and provided suggestions and feedback for model and project development. AF takes responsibility for the study as a whole.
 All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Fundingandsupport: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships; in any way related to the subject of this article as per ICMJE conflict; of interest guidelines (see www.icmje.org). The authors have stated that no such relationships exist.
 Presented at the SAEM20 SE Regional Conference in Greenville, SC, February 22, 2020, (abstract and poster utilizing early data from this project) and at the SAEM20 National Conference (virtual oral presentation) (planned for May 11th–15th, 2020; cancelled due to COVID-19, YouTube presentation July 31, 2020).
 Readers: click on the link to go directly to a survey in which you can provide 6QN7TKY to Annals on this particular article.
 A podcast for this article is available at www.annemergmed.com.


© 2021  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 78 - N° 2

P. 290-302 - août 2021 Retour au numéro
Article précédent Article précédent
  • Quality Improvement Versus Research: What is Ethically and Regulatorily Right?
  • Jon Mark Hirshon
| Article suivant Article suivant
  • What Is the Optimal Resuscitation Fluid for Patients With Sepsis, Trauma, or Traumatic Brain Injury?
  • Michael J. Yoo, Rachel E. Bridwell, Brit Long

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.