S'abonner

A screening test proposal for congenital defects based on maternal serum metabolomics profile - 17/02/23

Doi : 10.1016/j.ajog.2022.08.050 
Jacopo Troisi, MSc a, b, c, , Martina Lombardi, MSc b, c, Giovanni Scala, MSc b, d, Pierpaolo Cavallo, MD, PhD e, f, Rennae S. Tayler, MHSc g, Steven J.K. Symes, PhD h, i, Sean M. Richards, PhD i, j, David C. Adair, MD, PhD i, Alessio Fasano, MD, PhD c, k, Lesley M. McCowan, MD, PhD g, Maurizio Guida, MD, PhD b, l
a Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy 
b Theoreo srl, Montecorvino Pugliano, Salerno, Italy 
c Department of Chemistry and Biology, “A. Zambelli,” University of Salerno, Fisciano, Salerno, Italy 
d Hosmotic srl, Vico Equense, Italy 
e Department of Physics, University of Salerno, Fisciano, Salerno, Italy 
f Istituto Sistemi Complessi - Consiglio Nazionale delle Ricerche, Rome, Italy 
g Faculty of Medical and Health Sciences, Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand 
h Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN 
i Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 
j Department of Biology, Geology, and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 
k Department of Pediatrics, Harvard Medical School, Boston, MA 
l Department of Neurosciences and Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy 

Corresponding author: Jacopo Troisi, MSc.

Abstract

Background

Historically, noninvasive techniques are only able to identify chromosomal anomalies that accounted for <50% of all congenital defects; the other congenital defects are diagnosed via ultrasound evaluations in the later stages of pregnancy. Metabolomic analysis may provide an important improvement, potentially addressing the need for novel noninvasive and multicomprehensive early prenatal screening tools. A growing body of evidence outlines notable metabolic alterations in different biofluids derived from pregnant women carrying fetuses with malformations, suggesting that such an approach may allow the discovery of biomarkers common to most fetal malformations. In addition, metabolomic investigations are inexpensive, fast, and risk-free and often generate high performance screening tests that may allow early detection of a given pathology.

Objective

This study aimed to evaluate the diagnostic accuracy of an ensemble machine learning model based on maternal serum metabolomic signatures for detecting fetal malformations, including both chromosomal anomalies and structural defects.

Study Design

This was a multicenter observational retrospective study that included 2 different arms. In the first arm, a total of 654 Italian pregnant women (334 cases with fetuses with malformations and 320 controls with normal developing fetuses) were enrolled and used to train an ensemble machine learning classification model based on serum metabolomics profiles. In the second arm, serum samples obtained from 1935 participants of the New Zealand Screening for Pregnancy Endpoints study were blindly analyzed and used as a validation cohort. Untargeted metabolomics analysis was performed via gas chromatography-mass spectrometry. Of note, 9 individual machine learning classification models were built and optimized via cross-validation (partial least squares-discriminant analysis, linear discriminant analysis, naïve Bayes, decision tree, random forest, k-nearest neighbor, artificial neural network, support vector machine, and logistic regression). An ensemble of the models was developed according to a voting scheme statistically weighted by the cross-validation accuracy and classification confidence of the individual models. This ensemble machine learning system was used to screen the validation cohort.

Results

Significant metabolic differences were detected in women carrying fetuses with malformations, who exhibited lower amounts of palmitic, myristic, and stearic acids; N-α-acetyllysine; glucose; L-acetylcarnitine; fructose; para-cresol; and xylose and higher levels of serine, alanine, urea, progesterone, and valine (P<.05), compared with controls. When applied to the validation cohort, the screening test showed a 99.4%±0.6% accuracy (specificity of 99.9%±0.1% [1892 of 1894 controls correctly identified] with a sensitivity of 78%±6% [32 of 41 fetal malformations correctly identified]).

Conclusion

This study provided clinical validation of a metabolomics-based prenatal screening test to detect the presence of congenital defects. Further investigations are needed to enable the identification of the type of malformation and to confirm these findings on even larger study populations.

Le texte complet de cet article est disponible en PDF.

Key words : ensemble machine learning, fetal malformation, metabolomics, partial least squares-discriminant analysis, screening


Plan


 L.M.M. and M.G. contributed equally to this work.
 The authors declare the following competing financial interests: J.T., G.S., and M.G. have applied for a patent titled, “Non-invasive diagnostic method for the early detection of fetal malformation” (application number PCT/EP2015/060051). J.T. and G.S. are also employed in commercial companies (Theoreo srl and Hosmotic srl, Salerno, Italy) dealing with metabolomics profiling. The other authors report no conflict of interest.
 This project was funded by Theoreo srl, a spin-off company of the University of Salerno. The funding source had no role in the study design; collection, analysis, and interpretation of data; writing of the report; and decision to submit the article for publication.
 This study was registered on ClinicalTrials.gov (clinicaltrials.gov/; clinical trial identification number: NCT02965287). The date of registration was on November 16, 2016.
 Cite this article as: Troisi J, Lombardi M, Scala G, et al. A screening test proposal for congenital defects based on maternal serum metabolomics profile. Am J Obstet Gynecol 2023;228:342.e1-12.


© 2022  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 228 - N° 3

P. 342.e1-342.e12 - mars 2023 Retour au numéro
Article précédent Article précédent
  • Fetal growth trajectories of babies born large-for-gestational age in the LIFECODES Fetal Growth Study
  • Paige A. Bommarito, David E. Cantonwine, Danielle R. Stevens, Barrett M. Welch, Angel D. Davalos, Shanshan Zhao, Thomas F. McElrath, Kelly K. Ferguson
| Article suivant Article suivant
  • Ultrasound–integrated robotic identification of an isolated deep infiltrating endometriosis nodule of the sigmoid colon
  • Emad Mikhail, Jacqueline Amis, Robert D. Bennett

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.