S'abonner

A real-time interpretable artificial intelligence model for the cholangioscopic diagnosis of malignant biliary stricture (with videos) - 14/07/23

Doi : 10.1016/j.gie.2023.02.026 
Xiang Zhang, MS 1, , Dehua Tang, MD, PhD 1, 2, , Jin-Dong Zhou, MS 3, 4, , Muhan Ni, MS 2, , Peng Yan, MS 2, Zhenyu Zhang, MS 2, Tao Yu, MD, PhD 5, Qiang Zhan, MD, PhD 6, Yonghua Shen, MD, PhD 1, 2, Lin Zhou, MD, PhD 1, 2, Ruhua Zheng, MD, PhD 1, 2, Xiaoping Zou, MD, PhD 1, 2, 7, Bin Zhang, MD, PhD 1, 2, , Wu-Jun Li, PhD 3, 4, 8, , Lei Wang, MD, PhD 1, 2,
1 Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China 
2 Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China 
3 National Institute of Healthcare Data Science at Nanjing University, Nanjing, Jiangsu, China 
4 National Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China 
5 Departments of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China 
6 Department of Gastroenterology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China 
7 Department of Gastroenterology, Taikang Xianlin Drum Tower Hospital, Nanjing, Jiangsu, China 
8 Center for Medical Big Data, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China 

Reprint requests: Lei Wang, MD, PhD, Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210008, China.Department of GastroenterologyNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210008China∗∗Wu-Jun Li, PhD, National Institute of Healthcare Data Science at Nanjing University, Nanjing, Jiangsu 210008, China.National Institute of Healthcare Data Science at Nanjing UniversityNanjingJiangsu210008China∗∗∗Bin Zhang, MD, PhD, Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210008, China.Department of GastroenterologyNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210008China

Abstract

Background and Aims

It is crucial to accurately determine malignant biliary strictures (MBSs) for early curative treatment. This study aimed to develop a real-time interpretable artificial intelligence (AI) system to predict MBSs under digital single-operator cholangioscopy (DSOC).

Methods

A novel interpretable AI system called MBSDeiT was developed consisting of 2 models to identify qualified images and then predict MBSs in real time. The overall efficiency of MBSDeiT was validated at the image level on internal, external, and prospective testing data sets and subgroup analyses, and at the video level on the prospective data sets; these findings were compared with those of the endoscopists. The association between AI predictions and endoscopic features was evaluated to increase the interpretability.

Results

MBSDeiT can first automatically select qualified DSOC images with an area under the curve (AUC) of .963 and .968 to .973 on the internal testing data set and the external testing data sets, and then identify MBSs with an AUC of .971 on the internal testing data set, an AUC of .978 to .999 on the external testing data sets, and an AUC of .976 on the prospective testing data set, respectively. MBSDeiT accurately identified 92.3% of MBSs in prospective testing videos. Subgroup analyses confirmed the stability and robustness of MBSDeiT. The AI system achieved superior performance to that of expert and novice endoscopists. The AI predictions were significantly associated with 4 endoscopic features (nodular mass, friability, raised intraductal lesion, and abnormal vessels; P < .05) under DSOC, which is consistent with the endoscopists’ predictions.

Conclusions

The study findings suggest that MBSDeiT could be a promising approach for the accurate diagnosis of MBSs under DSOC.

Le texte complet de cet article est disponible en PDF.

Graphical abstract




Le texte complet de cet article est disponible en PDF.

Abbreviations : AI, AUC, CI, DeiT, DSOC, MBS, MLP, NA, NJDTH, NPV, PPV, QLHSU, VI, ViT, WXPH


Plan


 DISCLOSURE: All authors disclosed no financial relationships. The project is funded by China Postdoctoral Science Foundation (2022M721571), Jiangsu Provincial Health Commission (M20200034), and the key project of medical science and technology development of Nanjing Municipal Health Commission (ZKX21032). The funders of the study played no role in the study design, data collection, analysis, interpretation, or writing of the study.
 DIVERSITY, EQUITY, AND INCLUSION: We worked to ensure gender balance in the recruitment of human subjects. While citing references scientifically relevant for this work, we actively worked to promote gender balance in our reference list. The author list of this paper includes contributors from the location where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.


© 2023  American Society for Gastrointestinal Endoscopy. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 98 - N° 2

P. 199 - août 2023 Retour au numéro
Article précédent Article précédent
  • Diagnostic accuracy and safety of EUS-guided end-cutting fine-needle biopsy needles for tissue sampling of abdominal and mediastinal lymphadenopathies: a prospective multicenter series
  • Silvia Carrara, Daoud Rahal, Kareem Khalaf, Tommy Rizkala, Glenn Koleth, Cristiana Bonifacio, Marta Andreozzi, Benedetto Mangiavillano, Francesco Auriemma, Paola Bossi, Monica Balzarotti, Antonio Facciorusso, Teresa Staiano, Elena Maldi, Marco Spadaccini, Matteo Colombo, Alessandro Fugazza, Roberta Maselli, Cesare Hassan, Alessandro Repici
| Article suivant Article suivant
  • Suprapapillary placement of plastic versus metal stents for malignant biliary hilar obstructions: a multicenter, randomized trial
  • Yoshihide Kanno, Kei Ito, Kazunari Nakahara, Shinya Kawaguchi, Yoshiharu Masaki, Toru Okuzono, Hironari Kato, Masaki Kuwatani, Shotaro Ishii, Toji Murabayashi, Sho Hasegawa, Masatsugu Nagahama, Yuji Iwashita, Yosuke Michikawa, Shuzo Terada, Yujiro Kawakami, Yuki Fujii, Kazumichi Kawakubo

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.