S'abonner

Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data - 28/03/24

Doi : 10.1016/j.clinre.2024.102318 
Zhi-Mao Li a, b, 1, Wei Liu c, 1, Xu-Li Chen d, Wen-Zhi Wu a, Xiu-E. Xu a, Man-Yu Chu a, Shuai-Xia Yu a, En-Min Li e, He-Cheng Huang b, , Li-Yan Xu a,
a Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China 
b Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China 
c College of Science, Heilongjiang Institute of Technology, Harbin 150050, Heilongjiang, PR China 
d Department of Clinical Laboratory Medicine, Shantou Central Hospital, Shantou 515041, Guangdong, PR China 
e The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China 

Corresponding authors: Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, Guangdong, PR China.Institute of Oncologic PathologyShantou University Medical CollegeNo. 22, Xinling RoadShantouGuangdong515041PR China

Highlights

Clinical, serum proteomic, and radiomic data were integrated to develop classification models.
The models can accurately predict CCRT response of ESCC patients.
Nomogram models integrating multi-omics data achieved the best prediction performance.

Le texte complet de cet article est disponible en PDF.

Abstract

Background

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data.

Methods

A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package “rms” v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models.

Results

Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively).

Conclusion

We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.

Le texte complet de cet article est disponible en PDF.

Keywords : Concurrent chemo-radiotherapy, Esophageal squamous cell carcinoma, Olink proximity extension assay, Radiomics, Multi-omics, Classification model

Abbreviations : ESCC, CCRT, CR, non-CR, PEA, AJCC, RECIST, PR, SD, PD, ROIs, AUC


Plan


© 2024  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 48 - N° 4

Article 102318- avril 2024 Retour au numéro
Article précédent Article précédent
  • Chronic gastrointestinal immune-related adverse events in patients exposed to immune checkpoint inhibitors
  • Marine Jeay, Franck Carbonnel, Caroline Robert, Charlotte Mussini, Christophe Bellanger, Antoine Meyer
| Article suivant Article suivant
  • Gastric adenocarcinoma of fundic gland (chief cell predominant) type
  • Dong-Ge Han, Ke Wang, Wei Liu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.