Artificial Intelligence in Otolaryngology : Topics in Epistemology & Ethics - 04/06/24

Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder
Résumé |
To fuel artificial intelligence (AI) potential in clinical practice in otolaryngology, researchers must understand its epistemic limitations, which are tightly linked to ethical dilemmas requiring careful consideration. AI tools are fundamentally opaque systems, though there are methods to increase explainability and transparency. Reproducibility and replicability limitations can be overcomed by sharing computing code, raw data, and data processing methodology. The risk of bias can be mitigated via algorithmic auditing, careful consideration of the training data, and advocating for a diverse AI workforce to promote algorithmic pluralism, reflecting our population's diverse values and preferences.
Le texte complet de cet article est disponible en PDF.Keywords : Artificial intelligence ethics, Artificial intelligence governance, Artificial intelligence epistemology, Explainability, Bias
Plan
| Funding: 1. Developing an App-Based Voice Clinical Decision Support Tool to Augment the Sensitivity of the Bedside Swallow Evaluation in Older Adults K76- AG079040 RAMEAU, ANAIS. 2. Bridge2AI: Voice as a Biomarker of Health - Building an ethically sourced, bioacoustic database to understand disease like never before OT2-OD032720 RAMEAU, ANAIS. |
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
