The association of neighborhood characteristics with obesity and metabolic conditions in older women - 06/12/24

Doi : 10.1007/s12603-014-0551-z 
Mark D. Corriere 1, W. Yao 2, Q.L. Xue 2, A.R. Cappola 3, L.P. Fried 4, R.J. Thorpe 2, S.L. Szanton 2, 5, Rita Rastogi Kalyani 1, 2,
1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, 21287, Baltimore, Maryland, USA 
2 Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, Maryland 
3 Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA 
4 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA 
5 Johns Hopkins University School of Nursing, Baltimore, Maryland 

h(410)-502-6888, (410)-955-8172

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Objective

Previous studies exploring the relationship of neighborhood characteristics with metabolic conditions have focused on middle-aged adults but none have comprehensively investigated associations in older adults, a potentially vulnerable population. The aim was to explore the relationship of neighborhood characteristics with metabolic conditions in older women.

Design

Cross-sectional analysis.

Setting/Participants

We studied 384 women aged 70–79 years, representing the two-thirds least disabled women in the community, enrolled in the Women's Health and Aging Study II at baseline. Neighborhood scores were calculated from census-derived data on median household income, median house value, percent earning interest income, percent completing high school, percent completing college, and percent with managerial or executive occupation. Participants were categorized by quartile of neighborhood score with a higher quartile representing relative neighborhood advantage. Logistic regression models were created to assess the association of neighborhood quartiles to outcomes, adjusting for key covariates.

Measurements

Primary outcomes included metabolic conditions: obesity, diabetes, hypertension, and hyperlipidemia. Secondary outcomes included BMI, HbA1c, blood pressure and lipids.

Results

Higher neighborhood quartile score was associated with a lower prevalence of obesity (highest quartile=13.5% versus lowest quartile=36.5%; p<0.001 for trend). A lower prevalence of diabetes was also observed in highest (6.3%) versus lowest (14.4%) neighborhood quartiles, but was not significantly different (p= 0.24 for trend). Highest versus lowest neighborhood quartile was associated with lower HbA1c (−0.31%, p=0.02) in unadjusted models. Women in the highest versus lowest neighborhood quartile had lower BMI (−2.01 kg/m2, p=0.001) and higher HDL-cholesterol (+6.09 mg/dL, p=0.01) after accounting for age, race, inflammation, and smoking.

Conclusion

Worse neighborhood characteristics are associated with adiposity, hyperglycemia, and low HDL. Further longitudinal studies are needed and can inform future interventions to improve metabolic status in older adults.

Le texte complet de cet article est disponible en PDF.

Key words : Neighborhood, elderly, obesity, diabetes, metabolic abnormalities


Plan


© 2014  © 2014 SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 18 - N° 9

P. 792-798 - novembre 2014 Retour au numéro
Article précédent Article précédent
  • Influence of living situation on vulnerable elderly: Focus on nutritional status
  • Steve Strupeit, S. Meyer, A. Buss, J. Gräske, A. Worch, K. Wolf-Ostermann
| Article suivant Article suivant
  • Epigenetic nutraceutical diets in Alzheimer's disease
  • S. Davinelli, V. Calabrese, D. Zella, Giovanni Scapagnini

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.