Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage - 27/04/25

Doi : 10.1016/j.tjpad.2025.100079 
Ling Yue a, b, 1, Yongsheng Pan c, 1, Wei Li a, b, 1, Junyan Mao a, b, Bo Hong a, b, Zhen Gu a, b, Mingxia Liu d, , Dinggang Shen e, f, g, , Shifu Xiao a, b,
a Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, 200032, Shanghai, China 
b Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, 600 South Wanping Road, 200032, Shanghai, China 
c School of Computer Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China 
d Department of Radiology and BRIC, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC 27599, USA 
e School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China 
f Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China 
g Shanghai Clinical Research and Trial Center, Shanghai, 201210, China 

Corresponding author at: Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai. 600 South Wanping Road, 200030, China.Department of Geriatric PsychiatryShanghai Mental Health CenterShanghai Jiao Tong University School of Medicine600 South Wanping RoadShanghai200030China⁎⁎Corresponding author at: School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China. 393 Middle Huaxia Road.School of Biomedical EngineeringShanghaiTech University393 Middle Huaxia RoadShanghai201210China⁎⁎⁎Corresponding author at: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, 130 Mason Farm Road, NC 27599, USA.Department of Radiology and BRICUniversity of North Carolina at Chapel Hill130 Mason Farm RoadChapel HillNC27599USA

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Mild cognitive impairment (MCI) and preclinical MCI (e.g., subjective cognitive decline, SCD) are considered risk states of dementia, such as Alzheimer's Disease (AD). However, it is challenging to accurately predict conversion from normal cognition (NC) to MCI, which is important for early detection and intervention. Since neuropathological changes may have occurred in the brain many years before clinical AD, we sought to detect the subtle brain changes in the pre-MCI stage using a deep-learning method based on structural Magnetic Resonance Imaging (MRI).

Objectives

To discover early structural neuroimaging changes that differentiate between stable and progressive cognitive status, and to establish a predictive model for MCI conversion.

Design, setting and participants

We first created a unique deep-learning framework for pre-AD conversion prediction through the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) database (n = 845). Then, we tested the model on ADNI-2 (n = 321, followed 3 years) and our private study (n = 109), the China Longitudinal Aging Study (CLAS), to validate the rationality for pre-MCI conversion prediction. The CLAS is a 7-year community-based cohort study in Shanghai. Our framework consisted of two steps: 1) a single-ROI-based network (SRNet) for identifying informative regions in the brain, and 2) a multi-ROI-based network (MRNet) for pre-AD conversion prediction. We then utilized these "ROI-based deep learning" neural networks to create a composite score using advanced algorithm-building. We coined this score as the Progressive Index (PI), which serves as a metric for assessing the propensity of AD conversion. Ultimately, we employed the PI to gauge its predictive capability for MCI conversion in both ADNI-2 and CLAS datasets.

Measurements

We primarily utilized baseline T1-weighted MRI scans to identify the most discriminative brain regions and subsequently developed the PI in both training and validation datasets. We compared the PI across different cognitive groups and conducted logistic regression models along with their AUCs, adjusting for education level, gender, neuropsychological test scores, and the presence of comorbid conditions.

Results

We trained the SRNet and MRNet using 845 subjects from ADNI-1 with baseline MRI data, in which AD and progressive MCI (converting to AD within 3 years) patients were considered as positive samples, while NC and stable MCI (remaining stable for 3 years) subjects were considered as negative samples. The convolutional neural networks identified the top 10 regions of interest (ROIs) for distinguishing progressive from stable cases. These key brain regions included the hippocampus, amygdala, temporal lobe, insula, and anterior cerebellum. A total of 321 subjects from ADNI-2, including 209 NC (18 progressive NC (pNC), 113 stable NC (sNC), and 78 remaining NC (rNC)) and 112 SCD (11 pSCD, 5 sSCD, and 96 rSCD), as well as 109 subjects from CLAS, including 17 sNC, 16 pNC, 52 sSCD and 24 pSCD participated in the test set, separately. We found that the PI score effectively sorted all subjects by their stages (stable vs progressive). Furthermore, the PI score demonstrated excellent discrimination between the two outcomes in the CLAS data(p<0.001), even after controlling for age, gender, education level, depression symptoms, anxiety symptoms, somatic diseases, and baseline MoCA score. Better performance for prediction progression to MCI in CLAS was obtained when the PI score was combined with clinical measures (AUC=0.812; 95 %CI: 0.725–0.900).

Conclusions

This study effectively predicted the progression to MCI among order individuals at normal cognition state by deep learning algorithm with MRI scans. Exploring the key brain alterations during the very early stages, specifically the transition from NC to MCI, based on deep learning methods holds significant potential for further research and contributes to a deeper understanding of disease mechanisms.

Le texte complet de cet article est disponible en PDF.

Keywords : Deep-learning, Region-of-interest, Mild cognitive impairment, Prediction, MRI


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 12 - N° 5

Article 100079- mai 2025 Retour au numéro
Article précédent Article précédent
  • The associations between fresh vegetable and fruit consumption and plasma and PET biomarkers in preclinical Alzheimer's disease: A cross-sectional and longitudinal study of Chinese population
  • Heling Chu, Chuyi Huang, Fang Xie, Qihao Guo
| Article suivant Article suivant
  • Interactions of physical activity and lung function on cognitive health in older adults: Joint association and mediation analysis
  • Peng Hu, Dan Song, Tian Heng, Ling-Ling Yang, Chuan-Chuan Bai, Rui He, Tao Liu, Ya-Xi Luo, Xiu-Qing Yao

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.