Enhancing seizure detection with hybrid XGBoost and recurrent neural networks - 08/05/25

Doi : 10.1016/j.neuri.2025.100206 
Santushti Santosh Betgeri a , Madhu Shukla a, , Dinesh Kumar b , Surbhi B. Khan c, , Muhammad Attique Khan d , Nora A. Alkhaldi e
a Department of Computer Engineering, Marwadi University, Rajkot, Gujarat, 360003, India 
b School of Artificial Intelligence, Bennett University (The Times Group), Greater Noida, UP, 201310, India 
c School of Science, Engineering and Environment, University of Salford, United Kingdom 
d Center of AI, Prince Mohammad Bin Fahd University, Kingdom of Saudi Arabia 
e Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al Ahsa 36291, Kingdom of Saudi Arabia 

Corresponding authors.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Epileptic seizures are sudden and unpredictable, posing serious health risks and significantly affecting the quality of life of patients. An accurate and timely prediction system can help mitigate these risks by enabling preventive measures and improving patient safety. This study investigates machine learning and deep learning algorithms for seizure prediction, comparing their effectiveness on a large EEG dataset of epileptic patients. Signal processing techniques were applied to enhance data quality, and all models were trained on the same dataset for binary classification. Sixteen models were evaluated, including traditional classifiers such as Logistic Regression, K-Nearest Neighbors, Decision Trees, ensemble methods that include Random Forest, Gradient Boosting, and advanced techniques such as Extreme Gradient Boosting, Support Vector Machines, Gated Recurrent Units, and Long Short-Term Memory networks. Performance was assessed using multiple evaluation metrics on both training and validation datasets. While simpler models showed varied accuracy, ensemble and deep learning models performed significantly better, with hybrid approaches demonstrating strong generalization. Results show that whereas ensemble and deep learning models far exceeded simpler models, their accuracy varied. AUC of 0.995 and accuracy of 98.2% on validation data and 0.994 AUC with 96.8% accuracy on test data were obtained by the proposed hybrid Model integrating XGBoost with RNN-based architectures (LSTM and GRU). High recall (96.2%) shown by the Model guarantees minimal false negatives and is important for clinical uses. Furthermore, EEG signal preprocessing methods improved data quality, raising classification accuracy. This Model can be implemented for real-time monitoring using wearable devices, enabling continuous patient observation and remote healthcare applications.

Le texte complet de cet article est disponible en PDF.

Plan


© 2025  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 5 - N° 2

Article 100206- juin 2025 Retour au numéro
Article précédent Article précédent
  • Neuroimaging informatics framework for analyzing rare brain metastasis patterns in pleural mesothelioma using hybrid PET CT
  • Sumit Kumar Agrawal, Indra Prakash Dubey, Anoop Kumar Nair, Anurag Jain, Abhishek Mahato, Rajeev Kumar
| Article suivant Article suivant
  • Integrating brain-inspired computation with big-data analytics for advanced diagnostics in neuroradiology
  • Senthil Kumar, J. Ramprasath, V. Kalpana, Manikandan Rajagopal, Maheswaran S, Rupesh Gupta

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.