Short-window EEG-based auditory attention decoding for neuroadaptive hearing support for smart healthcare - 25/07/25

Doi : 10.1016/j.neuri.2025.100222 
Ihtiram Raza Khan a, b, , Sheng-Lung Peng c , Rupali Mahajan d , Rajesh Dey e
a Department of computer science, School of Engineering Sciences & Technology, Jamia Hamdard, Delhi, India 
b National Taipei University of Business, Taiwan 
c Department of Creative Technologies and Product Design, National Taipei University of Business, Taiwan 
d Vishwakarma Institute of Technology, Pune, India 
e Gopal Narayan Singh University, Sasaram, Bihar, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Selective auditory attention the brain's ability to focus on a specific speaker in multi-talker environments is often compromised in individuals with auditory or neurological disorders. While Auditory Attention Decoding (AAD) using EEG has shown promise in detecting attentional focus, existing models primarily utilize temporal or spectral features, often neglecting the synergistic relationships across time, space, and frequency. This limitation significantly reduces decoding accuracy, particularly in short decision windows, which are crucial for real-time applications like neuro-steered hearing aids. This study is to enhance short-window AAD performance by fully leveraging multi-dimensional EEG characteristics.

Methods

To address this, we propose TSF-AADNet, a novel neural framework that integrates temporal–spatial and frequency–spatial features using dual-branch architectures and advanced attention-based fusion.

Results

Tested on KULeuven and DTU datasets, TSF-AADNet achieves 91.8% and 81.1% accuracy at 0.1-second windows—outperforming the state-of-the-art by up to 7.99%.

Conclusions

These results demonstrate the model's potential in enabling precise, real-time attention tracking for hearing impairment diagnostics and next-generation neuroadaptive auditory prosthetics.

Le texte complet de cet article est disponible en PDF.

Keywords : Neurophysiological information, Auditory attention decoding, EEG, Neuroadaptive, DTU dataset


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 5 - N° 3

Article 100222- septembre 2025 Retour au numéro
Article précédent Article précédent
  • Deep learning model for patient emotion recognition using EEG-tNIRS data
  • Mohan Raparthi, Nischay Reddy Mitta, Vinay Kumar Dunka, Sowmya Gudekota, Sandeep Pushyamitra Pattyam, Venkata Siva Prakash Nimmagadda
| Article suivant Article suivant
  • AI-enhanced diagnosis of very late-onset schizophrenia-like psychosis: A step toward preventing dementia in older adults
  • Ali Allahgholi, Ava Mazhari

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.