Revealing spatiotemporal neural activation patterns in electrocorticography recordings of human speech production by mutual information - 04/09/25

Doi : 10.1016/j.neuri.2025.100232 
Julio Kovacs a, Dean Krusienski b, Minu Maninder c, Willy Wriggers a,
a Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, United States of America 
b Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America 
c Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, United States of America 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Spatiotemporal mapping of neural activity during continuous speech production has been traditionally approached using correlation coefficient (CC) analysis between cortical signals and speech recordings. A prior study employed this approach using electrocorticography (ECoG) data from participants who underwent invasive intracranial monitoring for epilepsy. However, CC cannot detect nonlinear relationships and is dominated by the correspondence between periods of silence and of non-silence.

New Method

We introduce the mutual information (MI) measure, which can capture both linear and nonlinear dependencies. We validated CC and MI on the sub-second spatiotemporal brain activity recorded during continuous speech tasks. To refine the results, we also implemented a novel “masked analysis”, which excludes periods of silence, and compared it with the standard (unmasked) analysis.

Results

Our findings show that previous results, obtained through more complex statistical methods, can be reproduced using CC with an appropriate threshold cutoff. Moreover, both standard MI and CC are influenced by broad transitions between silence and speech, but masking allows the detection of intrinsic correspondences between the two signals, revealing more localized activity.

Comparison with existing methods

Compared to the standard CC, masked MI highlights early prefrontal and premotor activations emerging ∼440 ms before speech onset. It also identifies sharper, anatomically coherent activations in key speech-related areas, demonstrating improved sensitivity to the fine-grained spatiotemporal dynamics of continuous speech production.

Conclusion

These findings deepen our understanding of the neural pathways underlying speech and underscore the potential of masked MI for advancing neural decoding in future speech-based brain-computer interface applications.

Le texte complet de cet article est disponible en PDF.

Highlights

Mutual information (MI) captures nonlinear neural dynamics missed by traditional cross correlation (CC) methods.
Masked MI detects earlier, more precise brain activity than standard (unmasked) methods.
MI yields higher signal clarity than CC, enhancing accuracy of speech decoding.
Masking silences improves spatial accuracy in mapping speech-related brain areas.
Findings support masked MI's use in real-time BCIs for speech in clinical settings.

Le texte complet de cet article est disponible en PDF.

Keywords : Electrocorticography (ECoG), Mutual information, Neural signal analysis, Spatiotemporal mapping, Brain-computer interface (BCI), Masked analysis


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 5 - N° 4

Article 100232- décembre 2025 Retour au numéro
Article précédent Article précédent
  • Morphometric characterization of early- and late-onset Parkinson's disease: An ROI-based study of classification and correlation
  • Sadhana Kumari, Bharti Rana, Shefali Chaudhary, Roopa Rajan, S. Senthil Kumaran, Achal Kumar Srivastava, Leve Joseph Devarajan
| Article suivant Article suivant
  • A comparative study of hybrid decision tree–deep learning models in the detection of intracranial arachnoid cysts
  • Aziz Ilyas Ozturk, Osman Yıldırım, Ebru İdman, Emrah İdman

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.