Predictive Modeling for Clostridioides difficile Infection : Current State of the Science, Clinical Applications, and Future Directions - 28/10/25
, Jenna Wiens, PhD bRésumé |
Despite 2 decades of effort, there is a lack of clinically deployed models for predicting incident, severe, or recurrent Clostridioides difficile infection (CDI). This review outlines the promise of machine learning and biomarker-augmented models for targeted prevention and treatment, but also emphasizes the challenges of real-world deployment—namely integration into clinical workflows and governance. Moving forward, progress will depend on translational biomarker development, pragmatic modeling pipelines, and continuous monitoring. With these elements in place, CDI prediction tools can become a template for precision prevention of healthcare-associated infections.
Le texte complet de cet article est disponible en PDF.Keywords : Clostridioides difficile infection, Machine learning, Artificial intelligence, Predictive modeling, Clinical decision making
Plan
Vol 39 - N° 4
P. 743-759 - décembre 2025 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
