S'abonner

Clinical potential of whole-genome data linked to mortality statistics in patients with breast cancer in the UK: a retrospective analysis - 28/10/25

Doi : 10.1016/S1470-2045(25)00400-0 
Daniella Black, MSc a, b, Helen Ruth Davies, PhD a, b, e, Gene Ching Chiek Koh, PhD a, b, c, Lucia Chmelova, MPhil a, b, Marko Cubric, MSc d, Georgia Chalivelaki Chan, PhD d, Andrea Degasperi, PhD a, b, Jan Czarnecki, PhD a, b, Ping Jing Toong, BA a, b, Yasin Memari, PhD a, b, James Whitworth, MD a, Salome Jingchen Zhao, MPhil a, b, Yogesh Kumar, PhD a, b, Shadi Basyuni, MD a, b, Giuseppe Rinaldi, MSc a, b, Scott Shooter, MSc a, b, Vladyslav Dembrovskyi, MSc e, Rosie Davies, PhD e, Maria Chatzou Dunford, PhD e, Ellen Copson, ProfMD PhD f, Carlo Palmieri, ProfMD PhD g, h, Åke Borg, ProfPhD i, John Ambrose, PhD d, Catey Bunce, DSc j, k, Alona Sosinsky, PhD d, Prabhu Arumugam, MD PhD d, Matthew Arthur Brown, MD d, Johan Staaf, PhD i, Nicholas Turner, ProfMD PhD j, k, Serena Nik-Zainal, ProfMD PhD a, b,
a Department of Genomic Medicine, University of Cambridge, Cambridge, UK 
b Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK 
c Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia 
d Genomics England, London, UK 
e Lifebit Biotech, London, UK 
f Cancer Sciences Academic Unit, University of Southampton, Southampton, UK 
g The Clatterbridge Cancer Centre, Wirral, UK 
h Department of Molecular and Clinical Cancer, Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK 
i Division of Oncology & Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden 
j Breast Unit, Royal Marsden Hospital and Institute of Cancer Research, London, UK 
k NIHR Institute of Cancer Research BRC, London, UK 

* Correspondence to: Prof Serena Nik-Zainal, Department of Genomic Medicine, University of Cambridge, Cambridge CB2 0QQ, UK Department of Genomic Medicine University of Cambridge Cambridge CB2 0QQ UK

Summary

Background

Breast cancer is the most frequently diagnosed cancer in women. Survival is generally considered favourable, yet some patients remain at risk of early death. We aimed to assess whether comprehensive whole-genome sequencing (WGS) linked to mortality data could add prognostic value to existing clinical measures and identify patients who might respond to targeted therapeutics.

Methods

In this integrative, retrospective analysis, we analysed 2445 breast cancer tumours (any stage and molecular subtype) collected from 2403 patients recruited through 13 National Health Service Genomic Medicine Centres or hospitals in England affiliated to the 100 000 Genomes Project (100kGP) between 2012 and 2018. We linked 2208 (90%) cases with clinical data; mortality data were obtained for 1188 patients. Following high-depth WGS of tumour and matched normal DNA, we performed comprehensive WGS profiling seeking driver mutations, mutational signatures, and compound algorithmic scores for homologous recombination repair deficiency (HRD), mismatch repair deficiency, and tumour mutational burden. Data from 1803 additional patients with breast cancer from three independent cohorts were used to validate various findings. To evaluate the prognostic value of WGS features, we performed univariable and multivariable Cox regression on data from patients with stage I–III, ER-positive, HER2-negative breast cancer with a cancer-specific mortality endpoint (around 5-year follow-up).

Findings

Among 2445 tumours in the 100kGP breast cancer cohort, we observed genomic characteristics with immediate personalised medicine potential in 656 (26·8%), including features reporting HRD (298 [12·2%] total cases and 76 [6·3%] ER-positive, HER2-negative cases), highly individualised driver events, mutations underpinning resistance to endocrine therapy, and mutational signatures indicating therapeutic vulnerabilities. 373 (15·2%) cases had WGS features with potential for translational research, including compromised base excision repair and non-homologous end-joining dependency. Structural variation burden (hazard ratio 3·9 [95 CI% 2·4–6·2]; p<0·0001), high levels of APOBEC signatures (2·5 [1·6–4·1]; p< 0·0001), and TP53 drivers (3·9 [2·4–6·2]; p < 0·0001) were independently prognostic of customary clinical measures (age at diagnosis, stage, and grade) in patients with ER-positive, HER2-negative breast cancer. We developed a prognosticator for ER-positive, HER2-negative breast cancer capable of identifying patients who require either increased intervention or therapy de-escalation, validating the framework in the independent Swedish Cancerome Analysis Network-Breast (SCAN-B) dataset.

Interpretation

We show that breast cancer genomes are rich in predictive and prognostic value. We propose a two-step model for effective clinical application. First, the identification of candidates for targeted therapies or clinical trials using highly individualised genomic markers. Second, for patients without such features, the implementation of enhanced prognostication using genomic features alongside existing clinical decision-making factors.

Funding

National Institute of Health Research, Breast Cancer Research Foundation, Dr Josef Steiner Cancer Research Award 2019, Basser Gray Prime Award 2020, Cancer Research UK, Sir Jeffrey Cheah Early Career Fellowship, the Mats Paulsson Foundation, the Fru Berta Kamprads Foundation, and the Swedish Research Council.

Le texte complet de cet article est disponible en PDF.

Plan


© 2025  The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 26 - N° 11

P. 1417-1431 - novembre 2025 Retour au numéro
Article précédent Article précédent
  • Abdominal shielding not recommended for diagnostic imaging with ionising radiation during pregnancy
  • Charlotte L LeJeune, Stéphanie Nougaret, Rodrigo T Massera, Priyanka Jha, Clarissa Bonanno, Hilde Bosmans, Clair Shadbolt, Frédéric E Lecouvet, Peter Hiles, Kristel Van Calsteren, Vincent Vandecaveye, Frédéric Amant
| Article suivant Article suivant
  • Radiotherapy-free pembrolizumab combined with chemotherapy for locally advanced non-small-cell lung cancer with PD-L1 tumour proportion score of 50% or higher (Evolution trial): a multicentre, single-arm, phase 2 study
  • Akito Hata, Taira Ninomaru, Hideaki Okada, Yoshihito Kogure, Masahide Oki, Nobuyuki Katakami, Takashi Kijima, Toshihide Yokoyama, Hirotaka Matsumoto, Yuki Sato, Terufumi Kato, Shunichi Sugawara, Takeshi Sawada, Kenichi Yoshimura, Takashi Seto, Kazuhiko Nakagawa, Isamu Okamoto, Nobuyuki Yamamoto, West Japan Oncology Group

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.