EEG-based classification in psychiatry using motif discovery - 23/11/25

Doi : 10.1016/j.neuri.2025.100242 
Melanija Kraljevska a , Kateřina Hlaváčková-Schindler , a, b , Lukas Miklautz a , Claudia Plant a, b
a Faculty of Computer Science, Research Group Data Mining and Machine Learning, University of Vienna, Austria 
b Data Science @ Uni Vienna, University of Vienna, Austria 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

In current medical practice, patients undergoing treatment for depression typically must wait four to six weeks before clinicians can assess their response to medication, due to the delayed onset of noticeable effects from antidepressants. Identifying treatment response at an earlier stage is of great importance, as it can reduce both the emotional and economic burden associated with prolonged treatment. We present a novel Motif Discovery Framework (MDF) that extracts dynamic features from EEG time series data to distinguish between treatment responders and non-responders in depression. Our findings show that MDF can predict treatment response with high precision as early as the 7th day of treatment, significantly reducing the waiting time for patients. Furthermore, we demonstrate that MDF generalizes well to classification tasks in other psychiatric conditions, including schizophrenia, Alzheimer’s disease, and dementia. Overall, our experiments show that MDF outperforms relevant benchmarks. The high precision of our classification framework underscores the potential of EEG dynamic properties-represented as motifs-to support clinical decision-making and ultimately enhance patient quality of life.

Le texte complet de cet article est disponible en PDF.

Keywords : Motif discovery, Motif classification, Prediction of treatment response, EEG signals, Psychiatric diseases, Major depressive disorder


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 6 - N° 1

Article 100242- mars 2026 Retour au numéro
Article précédent Article précédent
  • Advances in acquisition and post-processing optimization of IVIM MRI for brain imaging: A systematic review
  • Abhijith S., Saikiran Pendem, Rajagopal Kadavigere, Dharmesh Singh, Priya P.S.
| Article suivant Article suivant
  • Attention-Gated CNN and discrete wavelet transform based ensemble framework for brain hemorrhage classification
  • Srutanik Bhaduri, Rasel Mondal, Prateek Sarangi, Vinod Kumar Kurmi, Swati Goyal, Lovely Kaushal, Mahek Sodani, Tanmay Basu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.