Although regular muscular exercise is known to have many beneficial effects, exercise results in an increased production of radicals and other forms of reactive oxygen species (ROS).4 Borzone G., Zhao B., Merola A.J. , et al. Detection of free radicals by electron spin resonance in rat diaphragm after resistive loading J Appl Physiol 1994 ; 77 : 812
Cliquez ici pour aller à la section Références, 8 Davies K., Quintanilha A., Brooks G. , et al. Free radicals and tissue damage produced by exercise Biochem Biophys Res Commun 1982 ; 107 : 1198 [cross-ref]
Cliquez ici pour aller à la section Références, 11 Halliwell B., Gutteridge J.M. Iron toxicity and oxygen radicals Free Radicals in Biology and Medicine New York: Oxford Univ. Press (1989).
1-276
Cliquez ici pour aller à la section Références, 29 O'Neill C.A., Stebbins C.L., Bonigut S. , et al. Production of hydroxyl radicals in contracting skeletal muscle of cats J Appl Physiol 1996 ; 81 : 1197
Cliquez ici pour aller à la section Références, 36 Reid M., Haack K., Franchek K. , et al. Reactive oxygen in skeletal muscle: I. Intracellular oxidant kinetics and fatigue in vitro J Appl Physiol 1992 ; 73 : 1797
Cliquez ici pour aller à la section Références In fact, evidence exists to implicate ROS as an underlying cause in exercise-induced disturbances in muscle homeostasis (e.g., redox status), which could result in muscle fatigue or injury.16 Ji L.L., Stratman F., Lardy H. Antioxidant enzyme systems in rat liver and skeletal muscle Arch Biochem Biophys 1988 ; 263 : 150
Cliquez ici pour aller à la section Références, 26 Nashawati E., Dimarco A., Supinski G. Effects produced by infusion of a free radical-generating solution into the diaphragm Am Rev Respir Dis 1993 ; 147 : 60 [cross-ref]
Cliquez ici pour aller à la section Références, 29 O'Neill C.A., Stebbins C.L., Bonigut S. , et al. Production of hydroxyl radicals in contracting skeletal muscle of cats J Appl Physiol 1996 ; 81 : 1197
Cliquez ici pour aller à la section Références, 37 Reid M., Shoji T., Moody M. , et al. Reactive oxygen in skeletal muscle: II. Extracellular release of free radicals J Appl Physiol 1992 ; 73 : 1805
Cliquez ici pour aller à la section Références, 41 Shindoh A., Dimarco A., Thomas A. , et al. Effect of N-acetylcysteine on diaphragm fatigue J Appl Physiol 1990 ; 68 : 2107
Cliquez ici pour aller à la section Références Given the potential role of ROS in contributing to muscle fatigue or injury, it is not surprising that skeletal muscle myocytes contain defense mechanisms to reduce the risk for oxidative damage. Two major classes of endogenous protective mechanisms (i.e., enzymatic and nonenzymatic antioxidants) work as a unit to reduce the harmful effects of ROS in cells. This article provides a brief overview of cellular antioxidants and summarizes the current understanding of the effects of nutritional antioxidants on exercise performance. This article begins with a discussion of the primary units that comprise the endogenous antioxidant defense system in cells.
Le texte complet de cet article est disponible en PDF.
© 1999
W. B. Saunders Company. Publié par Elsevier Masson SAS. Tous droits réservés.© 1995