Development and Validation of a Noninvasive Method to Determine Arterial Pressure and Vascular Compliance - 10/09/11
Abstract |
The ability not only to record automated systolic and diastolic pressure, but also to derive measurements of the rate of pressure change during the cardiac cycle, would have great potential clinical value. A new method has been developed to obtain pressure measurements at 20-ms intervals by oscillometric cuff signal pattern recognition. Derivation of noninvasive pressure measurements is based on a T tube aorta and straight tube brachial artery, and assumes that the systolic phase of the suprasystolic cuff signal and the diastolic phase of the subdiastolic cuff signal most closely approximate systolic and diastolic aortic pressures, respectively. Arterial pressures obtained by this method were compared with simultaneous invasive measurements from the thoracic aorta in 36 patients. Good agreement was observed between noninvasive and invasive methods for systolic (146 ± 4 vs 145 ± 5 mm Hg), diastolic (80 ± 2 vs 77 ± 2 mm Hg), and mean (100 ± 3 vs 100 ± 3 mm Hg) arterial pressures, and correlation coefficients were r = 0.94, 0.91, and 0.95, respectively. To assess the validity of measurements of the rate of pressure change, oscillometric cuff signals from a subgroup of 14 patients were analyzed in detail for the peak positive pressure derivative (dP/dtMax), peak negative pressure derivative (dP/dtMin), and time interval between peak positive and peak negative pressure derivatives [tpp]. Results (mean ± SEM) were:
|
Plan
Vol 80 - N° 3
P. 323-330 - août 1997 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
