S'abonner

EPA-1671 – Diagnosing schizophrenia using neuroimaging: a meta-analysis of multivariate pattern recognition studies - 01/08/14

Doi : 10.1016/S0924-9338(14)78815-7 
J. Kambeitz 1, L. Kambeitz-Ilankovic 1, S. Leucht 2, S. Wood 3, C. Davatzikos 4, B. Malchow 5, P. Falkai 5, N. Koutsouleris 5
1 Department of Psychiatry, Ludwig-Maximilians-University, München, Germany 
2 Department of Psychiatry, Technical University Munich, München, Germany 
3 School of Psychology, University of Birmingham, Birmingham, United Kingdom 
4 University of Pennsylvania, Section of Biomedical Image Analysis Department of Radiology, Pennsylvania, USA 
5 Ludwig-Maximilians-University, Department of Psychiatry, Munich, Germany 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 2
Iconographies 2
Vidéos 0
Autres 0

Résumé

Background

Numerous studies have applied novel multivariate statistical approaches to the analysis of brain alterations in patients with schizophrenia. However the diagnostic accuracy of the reported predictive models differs largely, making it difficult to evaluate the overall potential of these studies to inform clinical diagnosis.

Methods

We conducted a comprehensive literature search to identify all studies reporting performance of neuroimaging-based multivariate predictive models for the differentiation of patients with schizophrenia from healthy control subjects. The robustness of the results as well as the effect of potentially confounding continous variables (e.g. age, gender ratio, year of publication) was investigated.

Results

The final sample consisted of n=37 studies studies including n=1491 patients with schizophrenia and n=1488 healthy controls. Metaanalysis of the complete sample showed a sensitivity of 80.7% (95%-CI: 77.0 to 83.9%) and a specificity of 80.2% (95%-CI: 83.3 to 76.7%). Separate analysis for the different imaging modalities showed similar diagnostic accuracy for the structural MRI studies (sensitivity 77.3%, specificity 78.7%), the fMRI studies (sensitivity 81.4%, specificity 82.4%) and resting-state fMRI studies (sensitivity 86.9%, specificity 80.3%). Moderator analysis showed significant effects of age of patients on sensitivity (p=0.021) and of positive-tonegative symptom ratio on specificity (p=0.028) indicating better diagnostic accuracy in older patients and patients with positive symptoms.





Discussion

Our analysis indicate an overall sensitivity and overall specificity of around 80 % of neuroimaging-based predictive models for differentiating schizophrenic patients from healthy controls. The results underline the potential applicability of neuroimaging-based predictive models for the diagnosis of schizophrenia.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2014  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 29 - N° S1

P. 1-2 - 2014 Retour au numéro
Article précédent Article précédent
  • EPA-1669 - Psychological factors of activity of health care seeking behavior in patients suffering from affective and neurotic disorders
  • Y. Malygin, V. Malygin, B. Tsygankov
| Article suivant Article suivant
  • EPA-1672 – The serotonin transporter in depression: meta-analysis and implications for understanding and treating depression
  • J. Kambeitz, O.D. Howes

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.