Abbonarsi

Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes - 06/09/17

Doi : 10.1016/j.jaci.2016.11.053 
Sanghun Choi, PhD a, b, c, Eric A. Hoffman, PhD c, d, e, Sally E. Wenzel, MD f, Mario Castro, MD g, Sean Fain, PhD h, Nizar Jarjour, MD h, Mark L. Schiebler, MD h, Kun Chen, PhD i, Ching-Long Lin, PhD a, b, d,
for the

National Heart, Lung and Blood Institute's Severe Asthma Research Programj

a Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, Iowa 
b IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa 
c Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 
d Department of Radiology, University of Iowa, Iowa City, Iowa 
e Department of Internal Medicine, University of Iowa, Iowa City, Iowa 
f Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa 
g Departments of Internal Medicine and Pediatrics, Washington University School of Medicine, St Louis, Mo 
h School of Medicine & Public Health, University of Wisconsin, Madison, Wis 
i Department of Statistics, University of Connecticut, Storrs, Conn 
j Severe Asthma Research Program, Bethesda, Md 

Corresponding author: Ching-Long Lin, PhD, 2406 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242.2406 Seamans Center for the Engineering Arts and SciencesIowa CityIA52242

Abstract

Background

Imaging variables, including airway diameter, wall thickness, and air trapping, have been found to be important metrics when differentiating patients with severe asthma from those with nonsevere asthma and healthy subjects.

Objective

The objective of this study was to identify imaging-based clusters and to explore the association of the clusters with existing clinical metrics.

Methods

We performed an imaging-based cluster analysis using quantitative computed tomography–based structural and functional variables extracted from the respective inspiration and expiration scans of 248 asthmatic patients. The imaging-based metrics included a broader set of multiscale variables, such as inspiratory airway dimension, expiratory air trapping, and registration-based lung deformation (inspiration vs expiration). Asthma subgroups derived from a clustering method were associated with subject demographics, questionnaire results, medication history, and biomarker variables.

Results

Cluster 1 was composed of younger patients with early-onset nonsevere asthma and reversible airflow obstruction and normal airway structure. Cluster 2 was composed of patients with a mix of patients with nonsevere and severe asthma with marginal inflammation who exhibited airway luminal narrowing without wall thickening. Clusters 3 and 4 were dominated by patients with severe asthma. Cluster 3 patients were obese female patients with reversible airflow obstruction who exhibited airway wall thickening without airway narrowing. Cluster 4 patients were late-onset older male subjects with persistent airflow obstruction who exhibited significant air trapping and reduced regional deformation. Cluster 3 and 4 patients also showed decreased lymphocyte and increased neutrophil counts, respectively.

Conclusions

Four image-based clusters were identified and shown to be correlated with clinical characteristics. Such clustering serves to differentiate asthma subgroups that can be used as a basis for the development of new therapies.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Key words : Computed tomography, image processing, severe asthma, air trapping, image registration, luminal narrowing, wall thickening, airway circularity, cluster analysis, neutrophilic asthma

Abbreviations used : ACQ, ACT, ADI, AirT%, AQLQ, BAL, BMI, BronInt, Cr, Dh, FRC, ICS, LA, OCS, PCA, PFT, QCT, RMB, SARP, sLLL, sLUL, sRLL, sRML, sRUL, TA, θ, TLC, ΔVairF, WA%, WT


Mappa


 Supported in part by National Institutes of Health grants: U01 HL114494, HL109152; R01 HL094315, HL112986, HL69174, HL064368, HL091762, HL069116; S10 RR022421; U10 HL109257, HL109168; UL1 RR024153 (CTSI), UL1 TR000448, UL1 TR000427 (CTSA). We thank J. Choi, M. J. Escher and A. M. Thompson for assisting with data analysis and acquisition, and SARP coordinators and patients for their contribution.
 Disclosure of potential conflict of interest: S. Choi, M. L. Schiebler, and C.-L. Lin receive grant support from the National Heart, Lung, and Blood Institute. E. A. Hoffman receives grant support from the National Institutes of Health (NIH) and is a founder and shareholder for VIDA Diagnostics. S. E. Wenzel serves as a consultant for Novartis, Knopp, GlaxoSmithKline, AstraZeneca, Sanofi, Genentech, Boehringer Ingelheim, and Circassia. M. Castro serves as a consultant for Boston Scientific, NeoStem, and Holaira; serves as paid speaker to Genentech; receives grant support from Amgen, Teva, Novartis, GlaxoSmithKline, Sanofi Aventis, Vectura, Medimmune, Invion and Boehringer Ingelheim; received royalties from Elsevier; and holds stock in Sparo. S. Fain receives grant support from GE Healthcare and the NIH. N. Jarjour receives grant support from the NIH and serves as a consultant for Teva Pharmaceuticals, AstraZeneca, and Daiichi Sankyo. The rest of the authors declare that they have no relevant conflicts of interest.


© 2017  American Academy of Allergy, Asthma & Immunology. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 140 - N° 3

P. 690 - settembre 2017 Ritorno al numero
Articolo precedente Articolo precedente
  • Asthma: The past, future, environment, and costs
  • Eyal Shemesh, Lawrence C. Kleinman
| Articolo seguente Articolo seguente
  • Diagnostic accuracy of fractional exhaled nitric oxide measurement in predicting cough-variant asthma and eosinophilic bronchitis in adults with chronic cough: A systematic review and meta-analysis
  • Woo-Jung Song, Hyun Jung Kim, Ji-Su Shim, Ha-Kyeong Won, Sung-Yoon Kang, Kyoung-Hee Sohn, Byung-Keun Kim, Eun-Jung Jo, Min-Hye Kim, Sang-Heon Kim, Heung-Woo Park, Sun-Sin Kim, Yoon-Seok Chang, Alyn H. Morice, Byung-Jae Lee, Sang-Heon Cho

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.