Abbonarsi

Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis - 21/01/19

Doi : 10.1016/j.gie.2018.10.020 
Tsuyoshi Ozawa, MD, PhD 1, 2, , Soichiro Ishihara, MD, PhD 1, 3, 4, Mitsuhiro Fujishiro, MD, PhD 5, Hiroaki Saito, MD 6, Youichi Kumagai, MD, PhD 7, Satoki Shichijo, MD, PhD 8, Kazuharu Aoyama, PhD 9, Tomohiro Tada, MD, PhD 1, 4, 9
1 Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama, Japan 
2 Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan 
3 Department of Surgery, Sanno Hospital, The International University of Health and Welfare, Tokyo, Japan 
4 Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan 
5 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan 
6 Department of Gastroenterology, Sendai Kousei Hospital, Miyagi, Japan 
7 Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan 
8 Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan 
9 AI Medical Service Inc, Tokyo, Japan 

Reprint requests: Tsuyoshi Ozawa, MD, PhD, Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan.Department of SurgeryTeikyo University School of Medicine2-11-1 KagaItabashi-kuTokyoJapan

Abstract

Background and Aims

Evaluation of endoscopic disease activity for patients with ulcerative colitis (UC) is important when determining the treatment of choice. However, endoscopists require a certain period of training to evaluate the activity of inflammation properly, and interobserver variability exists. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance using a large dataset of endoscopic images from patients with UC.

Methods

A CNN-based CAD system was constructed based on GoogLeNet architecture. The CNN was trained using 26,304 colonoscopy images from a cumulative total of 841 patients with UC, which were tagged with anatomic locations and Mayo endoscopic scores. The performance of the CNN in identifying normal mucosa (Mayo 0) and mucosal healing state (Mayo 0–1) was evaluated in an independent test set of 3981 images from 114 patients with UC, by calculating the areas under the receiver operating characteristic curves (AUROCs). In addition, AUROCs in the right side of the colon, left side of the colon, and rectum were evaluated.

Results

The CNN-based CAD system showed a high level of performance with AUROCs of 0.86 and 0.98 to identify Mayo 0 and 0–1, respectively. The performance of the CNN was better for the rectum than for the right side and left side of the colon when identifying Mayo 0 (AUROC = 0.92, 0.83, and 0.83, respectively).

Conclusions

The performance of the CNN-based CAD system was robust when used to identify endoscopic inflammation severity in patients with UC, highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver variability.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AI, AUROC, CAD, CI, CNN, PS, ROC, UC


Mappa


 DISCLOSURE: Drs Tada and Aoyama are employed by AI Medical Service Inc. All other authors disclosed no financial relationships relevant to this publication.


© 2019  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 89 - N° 2

P. 416 - febbraio 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video)
  • Yasuharu Maeda, Shin-ei Kudo, Yuichi Mori, Masashi Misawa, Noriyuki Ogata, Seiko Sasanuma, Kunihiko Wakamura, Masahiro Oda, Kensaku Mori, Kazuo Ohtsuka
| Articolo seguente Articolo seguente
  • Endoscopic magnet placement into subadventitial tunnels for augmenting the lower esophageal sphincter using submucosal endoscopy: ex vivo and in vivo study in a porcine model (with video)
  • Akira Dobashi, Shu-Wei Wu, Jodie L. Deters, Charles A. Miller, Mary A. Knipschield, Graham P. Cameron, Lichun Lu, Elizabeth Rajan, Christopher J. Gostout

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.