Abbonarsi

Climate change and artificial intelligence in healthcare: Review and recommendations towards a sustainable future - 07/11/24

Doi : 10.1016/j.diii.2024.06.002 
Daiju Ueda a, b, , Shannon L Walston a, Shohei Fujita c, Yasutaka Fushimi d, Takahiro Tsuboyama e, Koji Kamagata f, Akira Yamada g, Masahiro Yanagawa h, Rintaro Ito i, Noriyuki Fujima j, Mariko Kawamura i, Takeshi Nakaura k, Yusuke Matsui l, Fuminari Tatsugami m, Tomoyuki Fujioka n, Taiki Nozaki o, Kenji Hirata p, Shinji Naganawa i
a Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan 
b Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan 
c Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan 
d Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto 606-8507, Japan 
e Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan 
f Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan 
g Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan 
h Department of Radiology, Graduate School of Medicine, Osaka University, Suita-city, Osaka 565-0871, Japan 
i Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan 
j Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan 
k Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto 860-8556, Japan 
l Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558, Japan 
m Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan 
n Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan 
o Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan 
p Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

The healthcare sector is a significant driver of climate change.
More sustainable AI practices can mitigate the environmental impact while harnessing AI's potential.
Robust policy and governance are crucial for responsible and sustainable AI in healthcare.
Collaboration among stakeholders can foster innovation and drive sustainable AI adoption.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Climate change, Green computing, Sustainable AI, Sustainable development goals

Abbreviations : AI, ITU, SDGs, WHO


Mappa


© 2024  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 11

P. 453-459 - novembre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Single- and multi-site radiomics may improve overall survival prediction for patients with metastatic lung adenocarcinoma
  • Cécile Masson-Grehaigne, Mathilde Lafon, Jean Palussière, Laura Leroy, Benjamin Bonhomme, Eva Jambon, Antoine Italiano, Sophie Cousin, Amandine Crombé
| Articolo seguente Articolo seguente
  • Canadian radiology: 2024 update
  • Jason Yao, Birgit B. Ertl-Wagner, Jérémy Dana, Kate Hanneman, Mohammed Kashif Al-Ghita, Lulu Liu, Matthew D.F. McInnes, Savvas Nicolaou, Caroline Reinhold, Michael N. Patlas

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.