Abbonarsi

Diagnostic accuracy of artificial intelligence for identifying systolic and diastolic cardiac dysfunction in the emergency department - 13/12/24

Doi : 10.1016/j.ajem.2024.10.019 
Michael Gottlieb, MD , Evelyn Schraft, MD, James O'Brien, MD, Daven Patel, MD, MPH
 Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, United States of America 

Corresponding author.

Abstract

Introduction

Cardiac point-of-care ultrasound (POCUS) can evaluate for systolic and diastolic dysfunction to inform care in the Emergency Department (ED). However, accurate assessment can be limited by user experience. Artificial intelligence (AI) has been proposed as a model to increase the accuracy of cardiac POCUS. However, there is limited evidence of the accuracy of AI in the clinical environment. The objective of this study was to determine the diagnostic accuracy of AI for identifying systolic and diastolic dysfunction compared with expert reviewers.

Methods

This was a prospective, observational study of adult ED patients aged ≥45 years with risk factors for systolic and diastolic dysfunction. Ultrasound fellowship-trained physicians used an ultrasound machine with existing AI software and obtained parasternal long axis, parasternal short axis, and apical 4-chamber views of the heart. Systolic dysfunction was defined as ejection fraction (EF) < 50 % in at least two views using visual assessment or E-point septal separation >10 mm. Diastolic dysfunction was defined as an E:A < 0.8, or ≥ 2 of the following: septal e' < 7 cm/s or lateral e' < 10 cm/s, E:e' > 14, or left atrial volume > 34 mL/m2. AI was subsequently used to measure EF, E, A, septal e', and lateral e' velocities. The gold standard was systolic or diastolic dysfunction as assessed by two independent physicians with discordance resolved via consensus. We performed descriptive statistics (mean ± standard deviation) and calculated the sensitivity, specificity, positive likelihood ratio (LR+), and negative likelihood ratio (LR-) of the AI in determining systolic and diastolic dysfunction with 95 % confidence interval (CI). Subgroup analyses were performed by body mass index (BMI).

Results

We enrolled 220 patients, with 11 being excluded due to inadequate images, resulting in 209 patients being included in the study. Mean age was 60 ± 9 years, 51.7 % were women, and the mean BMI was 31 ± 8.1 mg/kg2. For assessing systolic dysfunction, AI was 85.7 % (95 %CI 57.2 % to 98.2 %) sensitive and 94.8 % (95 %CI 90.6 % to 97.5 %) specific with a LR+ of 16.4 (95 %CI 8.6 to 31.1) and LR- of 0.15 (95 % CI 0.04 to 0.54). For assessing diastolic dysfunction, AI was 91.9 % (95 %CI 85.6 % to 96.0 %) sensitive and 94.2 % (95 %CI 87.0 % to 98.1 %) specific with a LR+ of 15.8 (95 %CI 6.7 to 37.1) and a LR- of 0.09 (0.05 to 0.16). When analyzed by BMI, results were similar except for lower sensitivity in the BMI ≥ 30 vs BMI < 30 (100 % vs 80 %).

Conclusion

When compared with expert assessment, AI had high sensitivity and specificity for diagnosing both systolic and diastolic dysfunction.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : POCUS, Point-of-care ultrasound, Ultrasound, Artificial intelligence, Heart failure, Systolic dysfunction, Diastolic dysfunction, Ejection fraction


Mappa


© 2024  Elsevier Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 86

P. 115-119 - dicembre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • External evaluation of Brain Injury Guideline (BIG) low risk criteria for traumatic brain injury
  • Elena A. Puccio, Joshua B. Brown, Clifton W. Callaway, Adam N. Frisch, David O. Okonkwo, David J. Barton
| Articolo seguente Articolo seguente
  • High- versus low-dose ketamine for analgesia in older adults in the emergency department
  • Alexander D. Ginsburg, Heather A. Heaton, Aeryana Beaudrie-Nunn, Lucas Oliveira J. e Silva, Elizabeth Canterbury, Caitlin S. Brown, Allyson K. Palmer, Kristin C. Cole, Erin D. Wieruszewski, Fernanda Bellolio

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.