Artificial Intelligence-Based Image Enhancement in PET Imaging : Noise Reduction and Resolution Enhancement - 16/09/21
, Joyita Dutta, PhD b, c, ⁎ 
Résumé |
High noise and low spatial resolution are two key confounding factors that limit the qualitative and quantitative accuracy of PET images. Artificial intelligence models for image denoising and deblurring are becoming increasingly popular for the postreconstruction enhancement of PET images. We present a detailed review of recent efforts for artificial intelligence-based PET image enhancement with a focus on network architectures, data types, loss functions, and evaluation metrics. We also highlight emerging areas in this field that are quickly gaining popularity, identify barriers to large-scale adoption of artificial intelligence models for PET image enhancement, and discuss future directions.
Le texte complet de cet article est disponible en PDF.Keywords : PET, Artificial intelligence, Deep learning, Denoising, Deblurring, Super-resolution
Plan
Vol 16 - N° 4
P. 553-576 - octobre 2021 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
