Abbonarsi

On time regularity of stochastic evolution equations with monotone coefficients - 07/01/16

Doi : 10.1016/j.crma.2015.09.031 
Dominic Breit a , Martina Hofmanová b
a Department of Mathematics, Heriot-Watt University, Riccarton Edinburgh EH14 4AS, UK 
b Technical University Berlin, Institute of Mathematics, Straße des 17. Juni 136, 10623 Berlin, Germany 

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

pagine 5
Iconografia 0
Video 0
Altro 0

Abstract

We report on a time regularity result for stochastic evolutionary PDEs with monotone coefficients. If the diffusion coefficient is bounded in time without additional space regularity, we obtain a fractional Sobolev-type time regularity of order up to   for a certain functional   of the solution. Namely,   in the case of the heat equation and   for the p-Laplacian. The motivation is twofold. On the one hand, it turns out that this is the natural time regularity result that allows us to establish the optimal rates of convergence for numerical schemes based on a time discretization. On the other hand, in the linear case, i.e. when the solution is given by a stochastic convolution, our result complements the known stochastic maximal space–time regularity results for the borderline case not covered by other methods.

Il testo completo di questo articolo è disponibile in PDF.

Résumé

On étudie des résultats de régularité en temps pour des équations aux dérivées partielles stochastiques à coefficients monotones. Si le coefficient de diffusion est borné en temps, sans faire d'hypothèses supplémentaires sur la régularité en espace, on obtient une régularité en temps de type Sobolev fractionnaire d'ordre   pour une certaine fonction   de la solution u. Plus précisément,   dans le cas de l'équation de la chaleur et   pour le p-laplacien. La motivation est double : d'une part, il apparaît que ceci correspond à un résultat naturel de régularité en temps et, de plus, on obtient les taux de convergence optimaux pour les schémas de discrétisation en temps ; d'autre part, dans le cas linéaire, c'est-à-dire dans celui où la solution est donnée par une convolution stochastique, le résultat obtenu complète les résultats connus de régularité maximale dans l'espace-temps pour le cas limite, résultats qu'on ne peut pas obtenir par d'autres méthodes.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2015  Académie des sciences. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 354 - N° 1

P. 33-37 - gennaio 2016 Ritorno al numero
Articolo precedente Articolo precedente
  • A Rellich type theorem for the Helmholtz equation in a conical domain
  • Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Christophe Hazard, Antoine Tonnoir
| Articolo seguente Articolo seguente
  • A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations
  • Didier Bresch, Frédéric Couderc, Pascal Noble, Jean-Paul Vila

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.