Abbonarsi

A new fictitious domain method: Optimal convergence without cut elements - 07/06/16

Doi : 10.1016/j.crma.2016.02.002 
Alexei Lozinski
 Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France 

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

pagine 6
Iconografia 2
Video 0
Altro 0

Abstract

We present a method of the fictitious domain type for the Poisson–Dirichlet problem. The computational mesh is obtained from a background (typically uniform Cartesian) mesh by retaining only the elements intersecting the domain where the problem is posed. The resulting mesh does not thus fit the boundary of the problem domain. Several finite element methods (XFEM, CutFEM) adapted to such meshes have been recently proposed. The originality of the present article consists in avoiding integration over the elements cut by the boundary of the problem domain, while preserving the optimal convergence rates, as confirmed by both the theoretical estimates and the numerical results.

Il testo completo di questo articolo è disponibile in PDF.

Résumé

Nous présentons une méthode de type domaine fictif pour le problème de Poisson–Dirichlet. Le maillage de calcul est construit à partir d'un maillage ambiant (typiquement uniforme cartésien) en rejetant les éléments en dehors du domaine dans lequel le problème est posé. Le maillage ainsi obtenu n'est pas ajusté à la frontière du domaine du problème. Plusieurs méthodes d'éléments finis (XFEM, CutFEM) adaptées à ce type de maillages ont été proposées récemment. L'originalité de la méthode que l'on propose ici réside dans le fait que l'on évite l'intégration sur les éléments coupés par la frontière du domaine du problème, tout en préservant le taux de convergence optimal. Cette observation est confirmée par une étude théorique et par des essais numériques.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2016  Académie des sciences. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 354 - N° 7

P. 741-746 - luglio 2016 Ritorno al numero
Articolo precedente Articolo precedente
  • On bandwidth parameter choices for discrete nonparametric kernel estimator
  • Tristan Senga Kiessé
| Articolo seguente Articolo seguente
  • NURBS or not NURBS?
  • Marie-Laurence Mazure

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.