Abbonarsi

A kinematic vector penalty–projection method for incompressible flow with variable density - 01/11/16

Doi : 10.1016/j.crma.2016.06.007 
Philippe Angot a , Jean-Paul Caltagirone b , Pierre Fabrie c
a Aix-Marseille Université, Institut de mathématiques de Marseille – CNRS UMR 7373, Centrale Marseille, 39, rue Frédéric-Joliot-Curie, 13453 Marseille cedex 13, France 
b Université de Bordeaux & IPB, Institut de mécanique et d'ingénierie de Bordeaux – CNRS UMR 5295, 16, avenue Pey-Berland, 33607 Pessac, France 
c Université de Bordeaux & IPB, Institut de mathématiques de Bordeaux – CNRS UMR 5251, ENSEIRB–MATMECA, 33400 Talence, France 

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

In this Note, we present a new version of the vector penalty–projection splitting method described in [[1]] for the fast numerical computation of incompressible flows with variable density and viscosity. We show that the velocity correction can be made completely independent of the mass density ρ. Hence, this step is purely kinematic using the fast Helmholtz–Hodge decompositions proposed in [[2]]. Then, it is shown that the dynamic step of pressure gradient correction can be fast and locally consistent on edge-based generalized MAC-type unstructured meshes that naturally verify the compatibility condition in the proposed discrete setting. By the way, a new accurate front-tracking Lagrangian-advection technique is also introduced for multiphase flows.

This new method preserves the fully vector formulation of both the prediction and correction steps of the original scheme, the primary unknowns being   and ρ by advection, since the pressure Neumann–Poisson problem remains eliminated. The efficiency of the present method is demonstrated through numerical results on sharp test cases.

Il testo completo di questo articolo è disponibile in PDF.

Résumé

On présente dans cette Note une nouvelle version de la méthode de splitting par pénalité–projection vectorielle décrite dans [[1]] pour le calcul des écoulements incompressibles à masse volumique et viscosité variables. Le principal résultat est de rendre la correction vectorielle de vitesse complètement indépendante de la masse volumique ρ. Cette étape devient donc purement cinématique et correspond à une décomposition rapide de Helmholtz–Hodge proposée dans [[2]]. On montre que l'étape dynamique de correction du gradient de pression peut être rapide et localement consistante sur des maillages généralisés de type MAC non structurés.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2016  Académie des sciences. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 354 - N° 11

P. 1124-1131 - novembre 2016 Ritorno al numero
Articolo precedente Articolo precedente
  • The infinite differentiability of the speed for excited random walks
  • Cong-Dan Pham
| Articolo seguente Articolo seguente
  • The parareal algorithm for American options
  • Gilles Pagès, Olivier Pironneau, Guillaume Sall

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.