Abbonarsi

Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video) - 21/01/19

Doi : 10.1016/j.gie.2018.09.024 
Yasuharu Maeda, MD, PhD 1, , Shin-ei Kudo, MD, PhD 1, Yuichi Mori, MD, PhD 1, Masashi Misawa, MD, PhD 1, Noriyuki Ogata, MD, PhD 1, Seiko Sasanuma, MD, PhD 1, Kunihiko Wakamura, MD, PhD 1, Masahiro Oda, PhD 2, Kensaku Mori, PhD 2, Kazuo Ohtsuka, MD, PhD 3
1 Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan 
2 Graduate School of Informatics, Nagoya University, Nagoya, Japan 
3 Endoscopy Department, Tokyo Medical and Dental University, Tokyo, Japan 

Reprint requests: Yasuharu Maeda, MD, PhD, Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Tuzuki, Yokohama, Kanagawa 224-8503, Japan.Digestive Disease CenterShowa University Northern Yokohama Hospital35-1 TuzukiYokohamaKanagawa224-8503Japan

Abstract

Background and Aims

In the treatment of ulcerative colitis (UC), an incremental benefit of achieving histologic healing beyond that of endoscopic mucosal healing has been suggested; persistent histologic inflammation increases the risk of exacerbation and dysplasia. However, identification of persistent histologic inflammation is extremely difficult using conventional endoscopy. Furthermore, the reproducibility of endoscopic disease activity is poor. We developed and evaluated a computer-aided diagnosis (CAD) system to predict persistent histologic inflammation using endocytoscopy (EC; 520-fold ultra-magnifying endoscope).

Methods

We evaluated the accuracy of the CAD system using test image sets. First, we retrospectively reviewed the data of 187 patients with UC from whom biopsy samples were obtained after endocytoscopic observation. EC images and biopsy samples of each patient were collected from 6 colorectal segments: cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. All EC images were tagged with reference to the biopsy sample’s histologic activity. For validation samples, 525 validation sets of 525 independent segments were collected from 100 patients, and 12,900 EC images from the remaining 87 patients were used for machine learning to construct CAD. The primary outcome measure was the diagnostic ability of CAD to predict persistent histologic inflammation. Its reproducibility for all test images was also assessed.

Results

CAD provided diagnostic sensitivity, specificity, and accuracy as follows: 74% (95% confidence interval, 65%-81%), 97% (95% confidence interval, 95%-99%), and 91% (95% confidence interval, 83%-95%), respectively. Its reproducibility was perfect (κ = 1).

Conclusions

Our CAD system potentially allows fully automated identification of persistent histologic inflammation associated with UC.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : CAD, EC, MES, NBI, NPV, PPV, UC, WLE


Mappa


 DISCLOSURE: The following authors disclosed financial relationships relevant to this publication: S. Kudo, Y. Mori, M. Misawa: Speaker for Olympus; patent-holders and premium recipients for “Image-processing instrument and 47 method” (No. 6059271 in Japan). K. Mori: Research support recipient from Cybernet Corp. All other authors disclosed no financial relationships relevant to this publication. Research support for this study was provided by JSPS KAKENHI (grant no. JP17K15973).


© 2019  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 89 - N° 2

P. 408-415 - febbraio 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • EUS-guided antegrade intervention for benign biliary diseases in patients with surgically altered anatomy (with videos)
  • Shuntaro Mukai, Takao Itoi, Atsushi Sofuni, Takayoshi Tsuchiya, Reina Tanaka, Ryosuke Tonozuka, Mitsuyoshi Honjo, Mitsuru Fujita, Kenjiro Yamamoto, Yuichi Nagakawa
| Articolo seguente Articolo seguente
  • Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis
  • Tsuyoshi Ozawa, Soichiro Ishihara, Mitsuhiro Fujishiro, Hiroaki Saito, Youichi Kumagai, Satoki Shichijo, Kazuharu Aoyama, Tomohiro Tada

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.