Abbonarsi

Eigenspace Time Frequency Based Features for Accurate Seizure Detection from EEG Data - 13/03/19

Doi : 10.1016/j.irbm.2019.02.002 
M. Deriche , S. Arafat , S. Al-Insaif , M. Siddiqui
 King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

pagine 11
Iconografia 6
Video 0
Altro 0

Abstract

Background

Epilepsy is a neurological disorder that affects over 2% of the world population. Epilepsy patients suffer from recurring seizures that can be very harmful. The unpredictability of seizures is a major concern for medical practitioners because uncontrollable seizures can lead to sudden death and morbidity. A system that could warn patients and doctors alike about the impending seizure event would dramatically enhance the quality of life for patients.

Methods

While most previous research works focused on using signal processing tools appropriate for stationary signals, we propose here to use time and frequency (TF) analysis to extract features capable of discriminating normal from abnormal EEG traces (both ictal and interictal). The features are extracted using Singular Value Decomposition (SVD) of the EEG signal Time Frequency matrix. The left singular vectors of the time frequency matrix are used to obtain robust feature vectors. In contrast to existing techniques, the proposed TF-based technique can be used to detect the specific moments of seizure occurrences in time so that this information is used to discriminate interictal from ictal EEG traces. Instead of extracting the features directly from the TF matrix, we transform the left eigenvectors obtained from the SVD of the TF matrix into a feature vector that behaves like to a probability density function.

Results

We show that almost all classical classification techniques achieve excellent seizure detection results when used with the proposed TF features, irrespective of the classifier used. Contrary to existing works, we test our approach across several real-life scenarios covering 2, 3, and 5 possible classes of data. Our tests provided consistent results across different scenarios. The results, under different scenarios, outperformed existing ones achieving consistently more than 97.3% and up to 99.5% in terms of accuracy, sensitivity, and specificity.

Conclusion

Experimental results show that the novel features have successfully represented the characteristics of the underlying disease phenomenon from EEG data. Also, we conclude that learning based classifiers are better suited for this application, compared to Bayesian classifiers that have difficulty in adapting to the varying nature of the features' probability distribution function.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Highlights

A new algorithm for robust feature extraction from EEG for seizure detection.
A Time Frequency based representation with SVD is used for EEG traces modelling.
The eigenvectors from the TF-SVD decomposition are transformed into a pdf.
A comprehensive analysis of performance across different classifiers is carried.
Several scenarios (including 2, 3, and 5 classes of EEG data) are considered.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Electroencephalogram (EEG), EEG signals classification, Time frequency analysis, Singular value decomposition, Seizure detection, Machine learning based classifiers


Mappa


© 2019  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 40 - N° 2

P. 122-132 - marzo 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • EEG and Cognitive Biomarkers Based Mild Cognitive Impairment Diagnosis
  • N. Sharma, M.H. Kolekar, K. Jha, Y. Kumar

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.