Abbonarsi

Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy - 21/03/19

Doi : 10.1016/j.gie.2018.11.011 
Yan Zhu, MD 1, , Qiu-Cheng Wang, MCS 2, , Mei-Dong Xu, MD, PhD 1, Zhen Zhang, MD 1, Jing Cheng, MD 1, Yun-Shi Zhong, MD, PhD 1, Yi-Qun Zhang, MD, PhD 1, Wei-Feng Chen, MD, PhD 1, Li-Qing Yao, MD, PhD 1, Ping-Hong Zhou, MD, FASGE 1, , Quan-Lin Li, MD 1,
1 Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China 
2 Department of Computer Science, University of California, Irvine, Irvine, California, USA 

Reprint requests: Quan-Lin Li, MD, or Ping-Hong Zhou, MD, PhD, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.Endoscopy Center and Endoscopy Research InstituteZhongshan HospitalFudan UniversityShanghai200032China

Abstract

Background and Aims

According to guidelines, endoscopic resection should only be performed for patients whose early gastric cancer invasion depth is within the mucosa or submucosa of the stomach regardless of lymph node involvement. The accurate prediction of invasion depth based on endoscopic images is crucial for screening patients for endoscopic resection. We constructed a convolutional neural network computer-aided detection (CNN-CAD) system based on endoscopic images to determine invasion depth and screen patients for endoscopic resection.

Methods

Endoscopic images of gastric cancer tumors were obtained from the Endoscopy Center of Zhongshan Hospital. An artificial intelligence–based CNN-CAD system was developed through transfer learning leveraging a state-of-the-art pretrained CNN architecture, ResNet50. A total of 790 images served as a development dataset and another 203 images as a test dataset. We used the CNN-CAD system to determine the invasion depth of gastric cancer and evaluated the system’s classification accuracy by calculating its sensitivity, specificity, and area under the receiver operating characteristic curve.

Results

The area under the receiver operating characteristic curve for the CNN-CAD system was .94 (95% confidence interval [CI], .90-.97). At a threshold value of .5, sensitivity was 76.47%, and specificity 95.56%. Overall accuracy was 89.16%. Positive and negative predictive values were 89.66% and 88.97%, respectively. The CNN-CAD system achieved significantly higher accuracy (by 17.25%; 95% CI, 11.63-22.59) and specificity (by 32.21%; 95% CI, 26.78-37.44) than human endoscopists.

Conclusions

We constructed a CNN-CAD system to determine the invasion depth of gastric cancer with high accuracy and specificity. This system distinguished early gastric cancer from deeper submucosal invasion and minimized overestimation of invasion depth, which could reduce unnecessary gastrectomy.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : CAD, CI, CNN, EGC, ESD, M, ResNet, SM


Mappa


 DISCLOSURE: All authors disclosed no financial relationships relevant to this publication. Research support for this study was provided by the National Natural Science Foundation of China Nos. 81873552 (Li QL), 81470811 (Zhou PH), 81570595 (Xu MD), and 81670483 (Zhou PH); Major Project of Shanghai Municipal Science and Technology Committee nos. 18ZR1406700 (Li QL) and 16411950400 (Zhou PH); Chen Guang Program of Shanghai Municipal Education Commission no. 15CG04 (Li QL), Outstanding Young Doctor Training Project of Shanghai Municipal Commission of Health and Family Planning no. 2017YQ026 (Li QL), and the Project of Shanghai Municipal Commission of Health and Family Planning no. SHDC12016203 (Zhou PH).
 If you would like to chat with an author of this article, you may contact Dr Li at li.quanlin@zs-hospital.sh.cn or Dr Zhou at zhou.pinghong@zs-hospital.sh.cn.


© 2019  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 89 - N° 4

P. 806 - aprile 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • Monopolar hemostatic forceps with soft coagulation: earning a place in the endoscopic hemostasis repertoire for peptic ulcer bleeding
  • Raymond S.Y. Tang, James Y.W. Lau
| Articolo seguente Articolo seguente
  • Artificial intelligence for early gastric cancer: early promise and the path ahead
  • Yuichi Mori, Tyler M. Berzin, Shin-ei Kudo

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.