Abbonarsi

Thoughts on a new surgical assistance method for implanting the glenoid component during total shoulder arthroplasty. Part 1: Statistical modeling of the native premorbid glenoid - 31/03/19

Doi : 10.1016/j.otsr.2018.10.024 
Julien Berhouet b, c, , Luc Favard a, c, David Boas b, Théo Voisin b, Mohamed Slimane b
a Service d’orthopédie traumatologie, faculté de médecine de Tours, université François Rabelais de Tours, CHRU Trousseau, 1C, avenue de la République, 37170 Chambray-les-Tours, France 
b Équipe reconnaissance de forme et analyse de l’image, université François Rabelais de Tours, école d’ingénieurs polytechnique universitaire de Tours, laboratoire d’informatique EA6300, 64, avenue Portalis, 37200 Tours, France 
c Western France Orthopedics Society (SOO)/HUGORTHO, 18, rue de Bellinière, 49800 Trélazé, France 

Corresponding author. Service d’orthopédie traumatologie, faculté de médecine de Tours, université François Rabelais de Tours, CHRU Trousseau, 1C, avenue de la République, 37170 Chambray-les-Tours, France.France

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Introduction

The aim of this study was to identify points on the scapula that can be used to predict the anatomy of the native premorbid glenoid.

Material and methods

Forty-three normal scapulas reconstructed in 3D and positioned in a common coordinate system were used. Twenty points distributed over the blade of the scapula (portion considered normal and used as a reference) and the glenoid (portion considered pathological and needing to be reconstructed) were captured manually. Thirteen distances (X) between two points not on the glenoid and 31 distances (Y) between two points of which at least one was on the glenoid were then calculated automatically. A multiple linear regression model was applied to calculate the Y distances from the X distances. The best four equations were retained based on their coefficient of determination (R2) to explain a point on the glenoid being reconstructed (p<0.05). In the first scenario, the glenoid was modeled assuming it was completely destroyed. In the second scenario, only the inferior portion of the glenoid was worn.

Results

For a completely destroyed glenoid, the mean error for a chosen distance for a given point on the glenoid was 2.4 mm (4.e-3mm; 12.5mm). For a partially damaged glenoid, the mean error was 1.7mm (4.e-3mm; 6.5mm) for the same distance evaluated for a given point on the glenoid.

Discussion/Conclusion

The proposed statistical model was used to predict the premorbid anatomy of the glenoid with an acceptable level of accuracy. A surgeon could use this information during the preoperative planning stage and during the actual surgery by using a new surgical assistance method.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Premorbid glenoid, Multiple linear regression, Statistical prediction, Surgical assistance, Shoulder arthroplasty


Mappa


 Article issued from the Orthopaedics and Traumatology Society of Western France (SOO) – 2017 Tours meeting.


© 2019  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 2

P. 203-209 - aprile 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • Is CT indispensable in shoulder arthroplasty in 2019?
  • Pierre-Henri Flurin, François Sirveaux
| Articolo seguente Articolo seguente
  • Views on a new surgical assistance method for implanting the glenoid component during total shoulder arthroplasty. Part 2: From three-dimensional reconstruction to augmented reality: Feasibility study
  • Julien Berhouet, Mohamed Slimane, Maxime Facomprez, Min Jiang, Luc Favard

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.